

In search of the right way for extreme-scale HPC file system metadata

Qing Zheng¹, Kai Ren¹, Garth Gibson¹, Bradley W. Settlemyer² ¹Carnegie Mellon University ²Los Alamos National Laboratory [LA-UR-15-25703]

HPC defined by

- parallel scientific applications
 - $\,\circ\,$ running on compute nodes with pooled storage for highly parallel I/O

HPC Checkpointing

• copying memory from compute nodes to a backend file system

HPC Checkpointing

• copying memory from compute nodes to a parallel file system

HPC Checkpointing

• two-tier storage for higher bandwidth

DATA

LANL/HPC_showcase 8

2X CPU cores and 2X storage bandwidth

FILE CREATES

Parallel Data Lab - http://www.pdl.cmu.edu/

Parallel Data Lab - http://www.pdl.cmu.edu/

expensive w/ limited improvements

SCALING-DUT Use multiple dedicated machines to serve file system metadata

DISTRIBUTED METADATA

Parallel Data Lab - http://www.pdl.cmu.edu/

SCALING-DUT ...

SCALING-DUT ...

requires a large # of dedicated machines

Cost-effective highly-parallel metadata Orders of magnitude faster then LustreFS

Parallel Data Lab - http://www.pdl.cmu.edu/

Traditional Metadata Model

Traditional Metadata Model

A single authoritative view of the file system Allows different apps to shared data and achieve synchronization

HPC I/O is much simpler ...

Parallel Data Lab - http://www.pdl.cmu.edu/

HPC applications don't need the FS to achieve synchronization Different apps operate on different sets of files

HPC I/O is much simpler

INPLIT - HPC Application - OUTPLIT

A single unified file system view overkill for HPC applications Global coordination via a dedicated service bad for performance

HPC applications don't need the FS to achieve synchronization Different apps operate on different sets of files

Parallel Data Lab - http://www.pdl.cmu.edu/

No such global namespace managed by a centralized mediator Each app only communicates with its private metadata servers

Fundamental Assumption HPC applications don't communicate with each other

No such global namespace managed by a centralized mediator Each app only communicates with its private metadata servers

[snapshot = static view of a file system]

[snapshot = static view of a file system]

Keeps each app isolated from other running apps Truly parallel metadata processing among different apps

• Parallel Data Lab - http://www.pdl.cmu.edu/

• Parallel Data Lab - http://www.pdl.cmu.edu/

Converts online to batched offline sharing Allows apps to decide file visibility and timings for communication

[snapshot = static view of a file system]

Avoids unnecessary coordination synchronously enforced by a centralized metadata service

Converts online to batched offline sharing Allows apps to decide file visibility and timings for communication

Snapshot Merging

Parallel Data Lab - http://www.pdl.cmu.edu/

Snapshot Merging

Conflicts resolved at read path to avoid unnecessary computation Resolution performed by apps instead of a super authority

HPC in 10 years ...

- two-tier storage for cost-effective fast data
- client-funded namespace for highly-parallel metadata

Reference

BATCH75 Scaling the File System Control Plane with Client-Funded Metadata Servers (PDSW14)**INDEXFS** Scaling File System Metadata Performance with Stateless Caching and

Bulk Insertion (SC14)

####