

Accelerated Disks and Flashes: LANL's Early Experience in Speeding Up Analytics Workloads Using Smart Devices

Qing Zheng, Scientist, Los Alamos National Laboratory (LANL)

5/23/23

LA-UR-23-25558

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

Overview

Problem

Scientific analytics increasingly bottlenecked on data operations

Trend

Smart devices offer opportunities for acceleration

LANL's Early Exploratory Work

- 1. Campaign Storage 2.0: In-HDD SQL-like query processing (Seagate)
- 2. KV-CSD: a H/W accelerated KV store (SK hynix)
- 3. ABOF: H/W accelerated ZFS write pipeline (Eideticom, Aeon, Nvidia, SK hynix)

Background: HPC Simulation Workflow

A 3-step process: simulation, post-processing (may be skipped), and analysis

Perf. maximized when:

- Storage bandwidth fully utilized during data insertion
- Data transfer minimized during analysis (when query selectivity is high)
- Lowest possible data post-processing latency

Today's HPC data centers are having problems achieving any of these

Part I – ABOF: Accelerated Box of Flashes

Problem: Today's host CPU fail to compress data as fast as storage can absorb it

- Compression necessary for frugal use of SSD storage space
- High-entropy scientific data requires heavy compression methods such as gzip
- Host bottlenecks prevent apps from fully utilizing available SSD bandwidth

Up to 94% Perf. Loss Due to Host Bottlenecks

Streaming data into a 10+2 all-flash ZFS RAID pool

- Concurrent 1MB writes to a single file
- One ZFS host
- 12 NVMeOF flash SSDs

Can we offload compression to storage to bypass host bottlenecks?

ABOF: Towards Accelerated ZFS Writes

Compression by ZFS

Compression by accelerator

Result: 16x Faster Than Host Processing

Streaming data into a 10+2 all-flash ZFS RAID pool

- Concurrent 1MB writes to a single file
- One ZFS host
- 12 NVMeOF flash SSDs

16x faster than host gzip, comparable with no gzip (ABOF gzip is "free")

Part II – Campaign Storage 2.0

Problem: Scientific analytics increasingly bottlenecked on excessive data transfers

- A query may select only a tiny amount of data from a large dataset
- But a reader program may still have to read back an entire dataset from storage
- Excessive data movements cause long query latency

5/23/23

User sees even higher latency when data is read from a slow storage tier
Los Alamos

Time to Read 1PB of Data

Why Computational Storage Might Help

Baseline

Computational Storage

Current Prototype

One ZFS host, many HDDs, 1 CPU per HDD

- HDD: Seagate Research's Kinetic CS-HDD
 - CPU: 2x ARM Cortex-A53 cores
 - **RAM**: 1GB
 - **OS**: Ubuntu Linux
 - NIC: 2.5GbE
- Storage stack: ZFS
 - Data protection: RA
- Analytics softv

os Alamos

Two Challenges

Drives have no knowledge of FS file-to-block mapping

• Solution: LibZDB (allow querying ZFS for mapping information)

A data row may be split over multiple drives

• Data alignment control

Unaccelerated vs. Accelerated Runs

Host Processing

In-Drive Analytics

Result: In-Drive Analytics Up To 106x Faster

In-drive analytics allows sending only query results over the network

General Scenarios For In-Drive Analytics

A) Host has **network** bottlenecks

Near data compute reduces data movement

B) Host has **CPU** bottlenecks

Near data compute enables parallel processing across smart devices

C) Host has abundant network and CPU

Near data compute allows for more fully utilizing storage media bandwidth

Part III – KV-CSD: KV Computational Storage Device

Problem: LSM-Tree based KV stores often experience write stalls due to background compaction ops

- LSM-Tree increasingly popular
- Fast point/range query perf. over primary/secondary index keys thanks to background compaction
- Writes may be blocked when background compaction cannot keep up with foreground insertion

Can we offload compaction to storage?

KV-CSD Better Hides Compaction Latency

A 256M particle dataset stored as KV pairs

- Key: particle ID (16B)
- Value: particle payload (32B)

In-drive computation prevents compaction from blocking app writes

KV-CSD Allows Fast Queries to Run Faster

A 256M particle dataset stored as KV pairs

- Key: particle ID (16B)
- **Value**: particle payload (32B)
- Range query over a secondary index

In-drive KV search allows sending less data to host

Quick Recap

Campaign Storage 2.0	KV-CSD	ABOF
CSD	CSD	CSA
Cool tier	Hot tier	Hot tier
Format aware	Format aware	Format agonistic
Columnar datasets	Row-oriented datasets	Binary data
SQL	KV	FS
Multi-dimensional queries	Single-dimensional queries	Data capture, ABOF

over primary/secondary

indexes

2.0 will

tackle the read path

Large-scale data analytics is a core element of scientific discovery

Computational storage provides new ways of accelerating data-intensive analytics workloads

Preliminary results are promising

More work/collaboration/integration is needed for production deployment

