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Problem

Overview

Trend
Scientific analytics increasingly 
bottlenecked on data operations

Smart devices offer opportunities for 
acceleration

1. Campaign Storage 2.0: In-HDD SQL-like query processing (Seagate)

2. KV-CSD: a H/W accelerated KV store (SK hynix)

3. ABOF: H/W accelerated ZFS write pipeline (Eideticom, Aeon, Nvidia, SK hynix)

LANL’s Early Exploratory Work
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Background: HPC Simulation Workflow

A 3-step process: simulation, post-processing (may 
be skipped), and analysis

1. 
Simulation Storage 3. Analysis

2. Post-
processing

Rewrite data to a query 
optimized format

Perf. maximized when:

• Storage bandwidth fully utilized during 
data insertion

• Data transfer minimized during analysis 
(when query selectivity is high)

• Lowest possible data post-processing 
latency

Today’s HPC data centers are having problems achieving any of these
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Part I – ABOF: Accelerated Box of Flashes

Problem: Today’s host CPU fail to 
compress data as fast as storage can 
absorb it

• Compression necessary for frugal 
use of SSD storage space

• High-entropy scientific data requires 
heavy compression methods such as 
gzip

• Host bottlenecks prevent apps from 
fully utilizing available SSD 
bandwidth

1. 
Simulation

Storage
(Flash)

3. Analysis

2. Post-
processing

NVMoF
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Up to 94% Perf. Loss Due to Host Bottlenecks

Can we offload compression to storage to bypass host bottlenecks?
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94% perf. loss

Streaming data into a 10+2 
all-flash ZFS RAID pool

• Concurrent 1MB writes to 
a single file

• One ZFS host

• 12 NVMeOF flash SSDs
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ABOF: Towards Accelerated ZFS Writes
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Result: 16x Faster Than Host Processing

0

3000

6000

9000

12000

15000

1 2 4 8 16 32 64 128 256

W
rit

e 
Sp

ee
d 

(M
B/

s)

Number of Writer Threads

Compression=OFF
Compression=GZIP
Compression=ABOF_GZIP

Streaming data into a 10+2 
all-flash ZFS RAID pool

• Concurrent 1MB writes to 
a single file

• One ZFS host

• 12 NVMeOF flash SSDs

16x faster than host gzip, comparable with no gzip (ABOF gzip is “free”) 
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Problem: Scientific analytics 
increasingly bottlenecked on excessive 
data transfers

• A query may select only a tiny amount 
of data from a large dataset

• But a reader program may still have to 
read back an entire dataset from 
storage

• Excessive data movements cause long 
query latency

Part II – Campaign Storage 2.0

1. 
Simulation 3. Analysis

2. Post-
processing

Cool
(HDD)

Warm
(SSD)

SQL

• User sees even higher latency when data is read from a slow storage tier

Columnar Data 
(Parquet)



95/23/23

Time to Read 1PB of Data

Burst 
Buffer

3.2TB/s

312s

Local
Scratch

1.2TB/s

14min

Campaign 
Storage

100GB/s

2.8hr

Tape
Archive

10GB/s

28hr

Warmer Tiers Cooler Tiers
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Why Computational Storage Might Help

HDD HDD

Host

Storage

Application Application

Processing Element

Raw Parquet data

Query results

Raw Parquet data

Query results

Query results
SQL Engine

SQL Engine

Computational StorageBaseline
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Current Prototype

One ZFS host, many HDDs, 1 CPU per HDD

• HDD: Seagate Research’s Kinetic CS-HDD

− CPU: 2x ARM Cortex-A53 cores

− RAM: 1GB

− OS: Ubuntu Linux

− NIC: 2.5GbE

• Storage stack: ZFS

− Data protection: RAID (1, 2, or 3 parities)

• Analytics software: DuckDB
CPU CPUCPU CPU

ZFS

Application

Data Path
Analytics Path
(SQL Query)

 

 

 
5. Place the brackets on both sides of the disk drive and secure them with screws.  

         
A. View from Right Side of disk tray  

         
B. View from Left Side of disk tray  

        
6. Insert the disk tray into the subsystem. Place the drive carefully in the disk slot.  
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A Close Look

 

 

 
2. Prepare the Marvell interposer board.  

 

3. Connect the interposer board into the SATA disk drive.  

     
4. Place the Metal bracket on the disk drive.  

  
 

 

 
 
 
 
 

 

 

 
5. Place the brackets on both sides of the disk drive and secure them with screws.  

         
A. View from Right Side of disk tray  

         
B. View from Left Side of disk tray  

        
6. Insert the disk tray into the subsystem. Place the drive carefully in the disk slot.  
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Two Challenges

Drives have no knowledge of FS file-to-block mapping

• Solution: LibZDB (allow querying ZFS for mapping information)

A data row may be split over multiple drives

• Data alignment control

https://github.com/lanl-future-campaign/c2-libzdb2
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Unaccelerated vs. Accelerated Runs

Data insertion

DuckDB DuckDB DuckDB DuckDB

ZFS

Remote Shell

SQL queries

ZFS

DuckDB

SQL queries

In-Drive AnalyticsHost Processing
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Result: In-Drive Analytics Up To 106x Faster
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• 1 ZFS host (32 AMD CPU cores)
• 38 CS-HDDs

− 2x 16+3 RAID Pools
• 50GB real scientific dataset

− 2 billion rows
§ Columns: ID, x, y, z, ke

• Query:
− SELECT * WHERE ke>X

In-drive analytics allows sending only query results over the network



165/23/23

General Scenarios For In-Drive Analytics

A) Host has network bottlenecks

Near data compute reduces data movement

B) Host has CPU bottlenecks

Near data compute enables parallel processing across 
smart devices 

C) Host has abundant network and CPU

Near data compute allows for more fully utilizing 
storage media bandwidth
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Part III – KV-CSD: KV Computational Storage Device

Problem: LSM-Tree based KV stores 
often experience write stalls due to 
background compaction ops

• LSM-Tree increasingly popular

• Fast point/range query perf. over 
primary/secondary index keys thanks to 
background compaction

• Writes may be blocked when background 
compaction cannot keep up with 
foreground insertion

1. 
Simulation

Storage
(Flash)

3. Analysis

2. Post-
processing

LSM Compaction

KV

Can we offload compaction to storage?
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KV-CSD

KV-CSDHost

App

Client Library

SoC

KV-Store 
Implementation

NVMe
KV

NVMe
Zone SSD



195/23/23

KV-CSD Better Hides Compaction Latency
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A 256M particle dataset 
stored as KV pairs

• Key: particle ID (16B)

• Value: particle payload 
(32B)

In-drive computation prevents compaction from blocking app writes
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KV-CSD Allows Fast Queries to Run Faster

A 256M particle dataset 
stored as KV pairs

• Key: particle ID (16B)

• Value: particle payload 
(32B)

• Range query over a 
secondary index
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Quick Recap

CSD

Cool tier

Format aware

Columnar datasets

SQL

Multi-dimensional queries

Campaign Storage 2.0
CSD

Hot tier

Format aware

Row-oriented datasets

KV

Single-dimensional queries 
over primary/secondary 
indexes

KV-CSD
CSA

Hot tier

Format agonistic

Binary data

FS

Data capture, ABOF 2.0 will 
tackle the read path

ABOF
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Conclusion

Large-scale data analytics is a core element of scientific discovery

Computational storage provides new ways of accelerating data-intensive 
analytics workloads

Preliminary results are promising

More work/collaboration/integration is needed for production deployment


