
Software-Defined Storage for Fast TrajectoryQueries using a
DeltaFS Indexed Massive Directory

Qing Zheng
†
, George Amvrosiadis

†
, Saurabh Kadekodi

†
, Garth A. Gibson

†
, Charles D. Cranor

†
,

Bradley W. Settlemyer
‡
, Gary Grider

‡
, Fan Guo

‡

†
Carnegie Mellon University,

‡
Los Alamos National Laboratory

ABSTRACT
In this paper we introduce the Indexed Massive Directory, a new

technique for indexing data within DeltaFS. With its design as a

scalable, server-less file system for HPC platforms, DeltaFS scales

file system metadata performance with application scale. The In-

dexed Massive Directory is a novel extension to the DeltaFS data

plane, enabling in-situ indexing of massive amounts of data written

to a single directory simultaneously, and in an arbitrarily large num-

ber of files. We achieve this through a memory-efficient indexing

mechanism for reordering and indexing data, and a log-structured

storage layout to pack small writes into large log objects, all while

ensuring compute node resources are used frugally. We demon-

strate the efficiency of this indexing mechanism through VPIC,

a widely-used simulation code that scales to trillions of particles.

With DeltaFS, we modify VPIC to create a file for each particle to

receive writes of that particle’s output data. Dynamically indexing

the directory’s underlying storage allows us to achieve a 5000x

speedup in single particle trajectory queries, which require reading

all data for a single particle. This speedup increases with application

scale while the overhead is fixed at 3% of available memory.

1 INTRODUCTION
Faster storage media, faster interconnection networks, and improve-

ments in systems software have significantly mitigated the effect of

I/O bottlenecks in HPC applications. Even so, applications that read

and write data in small chunks are limited by the ability of both

the hardware and the software to handle such workloads efficiently.

Often, scientific applications partition their output using one file

per process. This becomes a problem in HPC platforms such as

Los Alamos National Laboratory’s (LANL) Trinity supercomputer,

which consists of more than 900,000 cores [5]. Moreover, this prob-

lem will worsen with exascale supercomputers, which are expected

to be at least 25 times larger than Trinity [1]. To avoid wasting

time to create output files on such machines, scientific applications

are forced to use libraries that combine multiple I/O streams into a

single file, such as HDF5 [21] and PLFS [9]. For many applications

where output is produced out-of-order, this needs to be followed

by a costly, massive data sorting operation. With DeltaFS, we allow

applications to write to an arbitrarily large number of files, while

also guaranteeing efficient data access without requiring sorting.

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the United States

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5134-8/17/11. . . $15.00

https://doi.org/10.1145/3149393.3149398

The first challenge when handling an arbitrarily large num-

ber of files is dealing with the resulting metadata load. We man-

age this using the DeltaFS file system [49]. DeltaFS extends prior

work [34, 36, 48] by being transient and server-less. The transient
property of DeltaFS allows each program that uses it to individually

control the amount of computing resources dedicated to the file

system, effectively scaling metadata performance under application

control. When combined with DeltaFS’s server-less nature, this

metadata scaling approach allows file system design and provi-

sioning decisions to be decoupled from the overall design of HPC

platforms. As a result, applications that create one file for each

process are no longer tied to the platform storage system’s ability

to handle metadata-heavy workloads. At the same time, the HPC

platform can provide scalable file creation rates without requiring

a fundamental redesign of the platform’s storage system.

The second challenge, and the topic of this paper, is guaranteeing

both fast writing and reading for workloads that consist primarily of

small I/O transfers. This work was inspired by our interactions with

cosmologists seeking to explore the trajectories of the highest en-

ergy particles in an astrophysics simulation using the VPIC plasma

simulation code [13]. In each timestep of the VPIC simulation, a

number of attributes are generated for every particle including its

location in physical space and its magnetic energy. While the data

produced for a single particle in a given timestep is small (tens of

bytes), VPIC simulations often contain trillions of particles and run

for tens of thousands of timesteps. Cosmologists may only identify

the high energy particles at the end of the simulation, so all particle

data needs to be retained until the end of the run. This results in an

I/O pattern consisting of small write and read operations directed

to a very large number of files, as we describe in Section 2.

To improve the performance of applications with small I/O access

patterns similar to VPIC, we propose IndexedMassive Directory as a

new technique for indexing data in-situ as data is written to storage.

The goal of this in-situ data indexing function is to efficiently recall

data that has been written to the same file without requiring any

time-consuming data post-processing step to reorganize data. This

greatly improves readback performance of applications downstream

of VPIC in a workflow, at the price of small overheads associated

with partitioning and indexing the data during writing. We present

Indexed Massive Directories in more detail in Section 3.

Our experiments in Section 4 show that DeltaFS is able to speed

up VPIC particle queries by many orders of magnitude. The index-

ing function itself consumes nomore than 3% of the VPIC’s memory,

and the resulting indexes add a mere 8% overhead to the final output

size. These results, achieved by applying software-defined design

principles to HPC storage systems, promise improved application

performance and simpler platform infrastructure in both system

software stacks and dedicated hardware allocations.

https://doi.org/10.1145/3149393.3149398

PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA Q. Zheng, G. Amvrosiadis, S. Kadekodi et al.

Simulation
Procs

File
System
API

Object
Store

Trajectory
Query

A
B
D
C

E
C
F
A

D
F
B
E

P P P

...

A B C

D
D

F
F

B
B

E
E

A
A

C
C

P P P

index

...

index index

A B C

O(1M)

O(1T)

O(1M)

O(1MB) search

O(1M)

O(1M)

O(1M)

O(1TB) search

Traditional file-per-process output DeltaFS file-per-particle output

In
d

e
xe

d
 M

a
s

s
iv

e
 D

ir

...

... ...

...

Figure 1: DeltaFS in-situ indexing of particle data in an Indexed Massive
Directory. While indexed particle data are exposed as one DeltaFS subfile per
particle, they are stored as indexed log objects in the underlying storage.

2 MOTIVATION
HPC platforms feature massive numbers of cores, huge memories,

low-latency interconnects, and are typically backed by large scratch

file systems for storing simulation output [10, 28]. As HPC clus-

ters scale, these scratch file systems [16, 37, 38, 44] have become

common performance bottlenecks for many parallel scientific ap-

plications. For an I/O bandwidth boost, newer HPC clusters use

a burst buffer, i.e., an extra tier of storage with higher data access

and transfer rates than the scratch file system, but significantly

smaller in capacity [5, 10, 26, 29]. Despite having burst buffers, ex-

isting HPC storage is still considered slow by scientific application

developers.

Scientific applications operate most efficiently when their run

time consists mostly of computing, with very little time spent out-

putting simulation state to storage. Simulation state is periodically

persisted to storage, in order to be later analyzed by the scientist,

and to restart in case of failure. Applications output multiple files

per process. Some applications may use libraries that combine mul-

tiple I/O streams into a single file [9, 21] to reduce the metadata

overhead to the underlying storage. In order to quickly persist data

to storage, however, the data is often written out of order, therefore

increasing the latency of data queries after the simulation. Today,

scientists typically resolve this issue through a massive data sorting

operation, wasting valuable compute time that could be used to

perform additional scientific work.

One such application is VPIC [13, 14], a highly-optimized particle

simulation code developed at LANL. Each VPIC simulation proceeds

in timesteps, and each process represents a bounding box in the

physical simulation space that particles move through. Every few

timesteps the simulation stops, and each process creates a file and

writes the data for the particles that are currently located within its

bounding box. This is the default, file-per-process mode of VPIC. For

each timestep, 40 bytes of data is produced per particle representing

the particle’s spatial location, velocity, energy, etc. We refer to the

entire particle data written at the same timestep as a frame, because
frame data is often used by domain scientists to construct false-

color movies of the simulation state over time. Large-scale VPIC

simulations have been conducted with up to trillions of particles,

generating terabytes of data for each frame.

Domain scientists are often interested in a tiny subset of particles

with specific characteristics, such as high energy, that is not known

until the simulation ends. All data for each such particle is gathered

for further analysis, such as visualizing its trajectory through space

over time. Unfortunately, particle data within a frame is written

out of order, since output order depends on the particles’ spatial

location. Therefore, in order to locate individual particles’ data over

time, all output data must be sorted before they can be analyzed.

For scientists working with VPIC, it would be significantly easier

programmatically to create a separate file for each particle, and

append a 40-byte data record on each timestep. This would reduce

analysis queries to sequentially reading the contents of a tiny num-

ber of particle files. Attempting to do this in today’s parallel file

systems, however, would be disastrous for performance. Expecting

existing HPC storage stacks and file systems to adapt to scientific

needs such as this one, however, is lunacy. Parallel file systems

[37, 38, 43, 44] are designed to be long-running, robust services that

work across applications. They are typically kernel resident, mainly

developed to manage the hardware, and primarily optimized for

large sequential data access. DeltaFS aims to provide this file-per-
particle representation to applications, while ensuring that storage

hardware is utilized to its full performance potential. A comparison

of the file-per-process (current state-of-the-art) and file-per-particle

(DeltaFS) representations is shown in Figure 1.

3 SYSTEM OVERVIEW
DeltaFS is a user-level file system that runs inside each simulation

process on compute nodes [49]. It provides the simulation appli-

cation a transient namespace decoupled from other applications

running on the same cluster. To ensure high metadata throughput,

DeltaFS packs directory entries, file inodes, and small files into large

immutable objects (SSTable sets [3, 17]) stored in an underlying

storage system [34]. Larger files are directly mapped to one or more

data objects, fully utilizing the underlying storage bandwidth [23].

DeltaFS, with its efficient and scalable metadata path that en-

ables high file creation rates [36, 48], seems like a natural fit to the

file-per-particle model. With DeltaFS, each particle file is created

under a shared DeltaFS directory. The file data and metadata within

the directory are then packed into large SSTable objects, and the

directory is split as necessary to utilize all DeltaFS instances run-

ning inside the parallel application. As with any other file system,

however, using DeltaFS to access the metadata of trillions of files

would cause too many I/O operations to the underlying storage. In

the case of DeltaFS each I/O would be sequential and larger than

for traditional file systems. Still, a large number of SSTables would

need to be compacted in the background, as DeltaFS attempts to

conserve buffer memory in order to avoid taxing the application.

Fortunately for DeltaFS, treating each particle as a full-fledged

file (with its own file inode, directory entry, and other metadata)

is largely unnecessary. In our case, particle files will only be used

as logical containers to group data that is intended to be read to-

gether but may be written out-of-order. These applications have no

interest in customizing the permissions, dates, or other attributes

of individual files. Furthermore, renaming or removing individual

files in this setting is also unusual. Since DeltaFS is created as a

DeltaFS Indexed Massive Directory PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA

proc M

proc N

map

DeltaFS
shuffle
sender

shuffle atop fast HPC
interconnect

idx data log

reduce

RPC buf

DeltaFS in-situ streaming MapReduce Final sort not
necessarily ever

done

frame/timestep J

DeltaFS
shuffle
receiver

idx obj

MemTable
3% or less
memory

...

pre-reduce

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

k
v

write

HPC Impl

DeltaFS
bg

indexer

data block

data
log obj

idx block

bloom
filter

...

data block

data block

Partial
sort

Identity

..
.

pid fid pdatamin max

..
.

Main
Thread

RPC
Thread

Worker
Thread

34

89
5634 89

Virtual SST

Figure 2: A MapReduce perspective on DeltaFS Indexed Massive Directory
serving an on-going VPIC simulation. Each record key consists of the frame
ID (fid) and particle ID (pid). The particle data (pdata) make up the value.
Records are shuffled by pid. Each pre-reducer does partial sort and indexing,
and appends the resulting data, index, and filter blocks to two output objects
to form virtual SSTables (SSTables not organized as one-file-per-table).

user-space transient file system, it is able to customize a virtual

file-per-particle representation for a simulation application.

As illustrated in Figure 1, when operating in a specially-marked

directory, datawritten to the same filename are considered to belong

to the same index key, and will be dynamically indexed by DeltaFS.

Files created for each particle are implemented by DeltaFS as special

inode-less files that we refer to as subfiles. Each subfile shares the

inode of its parent directory to allow normal file system operations

such as open and close. DeltaFS disallows rename, chown, unlink,
as well as a few other operations on subfiles due to the absence of

inodes and directory entries. In order to quickly read each subfile

without first sorting the entire directory, the data of these subfiles

are shuffled, indexed, and reorganized by DeltaFS as indexed log

objects stored in the underlying storage. We refer to these specially-

marked directories as Indexed Massive Directories.
An application creates a massive directory by calling mkdirwith

a special flag. To access each subfile inside a massive directory,

an application first performs an open on the directory to obtain a

directory handle. Then, the returned handle is used to perform an

openat on the subfile, which returns a file handle that can then be

used to perform normal read and write operations. The reason a

massive directory must first be opened before any of its subfiles

may be accessed is because DeltaFS does not allocate inodes or

directory entries for subfiles, so the directory context is needed for

DeltaFS to locate subfile data, as well as the indexes for those data.

In the remainder of this section we present the design of this

in-situ data indexing function as a streaming MapReduce pipeline,

highlight some of the techniques we used to overcome the restric-

tions and challenges for running an I/O service in-situ within an

HPC application, and discuss its implementation.

A streaming MapReduce analogy. Consider a classic MapRe-

duce [20] program that converts an existing VPIC simulation output

from its original file-per-process representation to the new file-per-

particle representation noted above. One way to achieve this would

be creating a mapper for each VPIC output file and having that map-

per generate a record for each 40-byte particle data read from the

output file. In this case, each record would be a key-value pair. The

key for these records should be encoded as a particle ID prefixed

with a frame index, and the value would just be the original 40-byte

particle data. Records generated by mappers would be shuffled and

sent to reducers. This can be achieved by hashing particle IDs to a

reasonable number of reducer processes (perhaps the same as the

number of processes used for the original simulation). To make this

efficient it would also be necessary to batch and shuffle together

many particle records to fully utilize the network bandwidth.

Because of the shuffling, reducers would see non-overlapping

sets of particles. Assuming the sort before each reducer was already

keyed by the frame index, each reducer could just perform a no-op

and directly append each particle data to its final per-file destination.

Unfortunately, allocating a destination file for each particle would

be too costly for the underlying storage. A more realistic approach

for each reducer is to append all data to a single per-reducer log file

and to have a separate per-reducer index file to map every particle

to its data locations. These data locations would be offsets within

the log file that stored the relevant particle data.

Because particles were shuffled before reaching a reducer, a

reader seeking a particle trajectory could just hash the ID of the

particle to identify the reducer, and then read the index file produced

by that reducer to locate all trajectory data. The size of the index

file would be bounded in this case and would not increase with

simulation scale. In addition, by separating the indexes from the

data log generated by each reducer, these indexes could be fetched

efficiently with large sequential reads.

General-purpose MapReduce engines like Hadoop [2] or Spark

[4] could execute this, but would be extremely inefficient. This is

because at HPC scale the temporary files created for the sorting

before the reduce phase would not fit in the main memory of the

compute nodes, and because most compute node memory would

belong to the simulation application. With a tiny bit of memory,

partially sorted data would have to be pushed to and from storage

repeatedly until the final sort could ever be completed.

To avoid this inefficiency, reducers in the MapReduce pipeline

must live with partially-sorted data so the final sort could be by-

passed. We call these special reducers pre-reducers. The data sorted
in each partial-sort is bounded by the memory DeltaFS is allowed

to steal from the application. Each partial-sort produces a small

sorted run of data. But without a final sort to merge all those runs,

these runs will have overlapping ranges and a reader will have to

check every run produced by a reducer in order to fetch a com-

plete trajectory. To avoid potentially many unnecessary seeks to

the underlying storage for non-existing data, a bloom filter [11] is

created for each run and is appended to the per-reducer index file.

A reader may use these bloom filters to perform membership tests

and bound the number of storage seeks per trajectory per frame.

Figure 2 shows a logic MapReduce perspective on DeltaFS in-situ

indexing. Shuffle sender (mapper) and receiver (pre-reducer) illus-

trated in the figure are merely roles taken by DeltaFS embedded

inside each simulation process on compute nodes. No additional

nodes or processes are needed to execute the pipeline. Each DeltaFS

instance acts as a sender and a receiver simultaneously, and differ-

ent DeltaFS instances communicate with each other through an

RPC-based mechanism [15, 39]. Frame output written by the simu-

lation code into DeltaFS will be converted into key-value pairs and

PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA Q. Zheng, G. Amvrosiadis, S. Kadekodi et al.

245x 665x 532x 625x 992x 2221x 4049x 5112x

0.015625

0.0625

0.25

1

4

16

64

256

1024

4096

496 992 1984 3968 7936 16368 32736 49104

Q
u

e
ry

 T
im

e
 (

s
e

c
)

Simulation Size (M Particles)

Baseline DeltaFS

(a) Query time

108% 108% 108% 108%
108%

108%

108%

108%

0

3

6

9

12

15

496 992 1984 3968 7936 16368 32736 49104

O
u

tp
u

t
S

iz
e

 (
T

iB
)

Simulation Size (M Particles)

Baseline DeltaFS

(b) Output size

9.63x 4.78x 2.42x
1.56x

1.29x

1.13x 1.15x 1.13x

0

40

80

120

160

200

496 992 1984 3968 7936 16368 32736 49104

F
ra

m
e

 W
ri

te
 T

im
e

 (
s

e
c

)

Simulation Size (M Particles)

Baseline DeltaFS

(c) Frame write time

Figure 3: Results from real VPIC simulation runs with and without DeltaFS at LANL Trinity computer. Simulation and output experiments (c) are not variable,
and we show the average of two runs, while query times (a) are much more variable, and we show the average of 100 different particles queried (all with cold caches).

sent to bins (MemTables) allocated by DeltaFS at the receiver side

using only a few percent (typically 3% or less) of the application’s

memory. When one of these bins is full, it will be sorted and in-

dexed by a DeltaFS background thread. The sorted data is formatted

as SSTable data blocks and is appended to that bin’s log object in

the underlying storage. The much smaller index for that data, as

well as the bloom filter, is delayed longer, but eventually appended

to that bin’s index object as SSTable index and filter blocks. To

ensure durability, frame data buffered in bins are forcefully flushed

to storage at the beginning of the next frame output, when each

shuffle receiver must have received all data for the previous frame.

4 EXPERIMENTS
To evaluate the performance of DeltaFS Indexed Massive Direc-

tories, we slightly modified VPIC to support our file-per-particle

model. Specifically, rather than writing a tuple of particle ID and

payload to a single output file per VPIC process, we write the pay-

load to a file named by that particle’s ID. We used LD_PRELOAD to

redirect VPIC’s file I/O to DeltaFS. Applications other than VPIC

and regular tools may also use LD_PRELOAD to use DeltaFS.

Our experiments were performed on LANL’s Trinity system [5].

Each Trinity compute node has 32 CPU cores and 128GiB DDR4

memory. These compute nodes are able to communicate with a

small set of burst-buffer nodes through a dragon-fly network [7].

Each burst-buffer node has a peak data bandwidth of 5.33GiB/s, and

provides about 5.83TiB of usable storage. In our experiments, we

used a maximum of 99 compute nodes and 3 burst-buffer nodes.

We configured VPIC to simulate a fixed number of timesteps and

then write 40 bytes of state per particle to the burst buffer. Each

our experiment consisted of 5 such particle dumps. On Trinity each

compute phase takes around 7 minutes to run. Once a simulation

completes, we stage the output data from burst buffer to a backend

Lustre file system as the burst buffer storage must be released at

the end of each job. We then measure the performance of trajectory

reads on a set of randomly selected VPIC particles. All reads go to

the Lustre file system, because the output is no longer in the burst

buffer. This models a post-processing phase at a later time.

We compare the performance of running VPIC both with and

without DeltaFS. For the baseline case of VPIC without DeltaFS,

the VPIC simulation writes one output file per process. For the

VPIC with DeltaFS enabled, the simulation writes one DeltaFS file

per particle. In the DeltaFS case, particle data will be dynamically

indexed and stored as virtual SSTables. Post-processing trajectory

reads from the Lustre file system, in the baseline case, are imple-

mented by scanning the entire simulation output in parallel using

the same number of CPU cores as the original simulation. DeltaFS

trajectory reads, on the other hand, require using only a single

CPU core to read the corresponding DeltaFS particle files. The data

of these particle files can be quickly located by DeltaFS using the

indexes it creates as it writes the data to the underlying storage.

We run VPIC at 8 different scales, simulating 496 million to 48

billion particles. We maintain a fixed ratio of 16 million particles per

VPIC process and 31 VPIC processes per compute node. We reserve

1 core on each node for core specialization – specifically, we have

found this is required to reduce network performance variance

when using TCP communication over the Aries interconnect. Core

specialization is enforced by SLURM via Linux cgroups. Thus, our
smallest run uses 1 node with 31 processes on it, while our largest

run uses 3069 VPIC processes on 99 nodes. We allocate one burst

buffer node for every 16 billion particles. We present three types

of experimental results: the time it takes to read the trajectory of a

single particle from the simulation output (query time), the total

size of data produced by the simulation (output size), as well as the

total time it takes to write out all the particles at a specific timestep

(frame write time).

Query time. In Figure 3(a), we show the time it takes to read

the trajectory of a random particle for both the baseline runs and

the DeltaFS runs. Note that both axes are shown in logarithmic

scale. For the baseline runs, the particle query time is proportional

to the simulation size. This is because we have no pre-computed

indexes to map a particle to its physical data locations and thus

have to scan the entire simulation output. This scan time quickly

rises from 40 seconds for small runs up to 20 minutes for larger runs.

On the other hand, DeltaFS is able to resolve trajectory queries in a

small and bounded amount of time because the latency of reading

a particle trajectory in DeltaFS is largely dependent on the size of

the indexes that must be read into the memory. This time is tiny in

our experiments due to partitioning, and it increases very slowly as

simulation size increases. The plot shows the average query times

for DeltaFS runs range from 150ms in the 496-million-particle case

(a 245x improvement over the baseline), to 260ms in the 48-billion-

particle case (a 5112x improvement over the baseline). Also note

that all DeltaFS queries executed entirely on a single CPU core,

while the trajectory queries for the baseline case use up to 3069

CPU cores for parallel data scanning.

DeltaFS Indexed Massive Directory PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA

Output size. Figure 3(b) shows the total output size produced
by both types of runs. DeltaFS has the additional overhead of stor-

ing the indexes and filters it generates, plus it also has additional

overhead from encoding and padding the simulation output and

indexes. The figure shows that DeltaFS’s additional overhead is

moderate across our experiments (around 8%).

Frame write time. Figure 3(c) shows the average time it takes

to write out a simulation frame to burst-buffer for both types of

runs. The DeltaFS frame write time includes the additional cost

of building and writing the in-situ indexing for particle data. Also

note that in the first 5 runs of the plot only a single burst-buffer

node was used. In the largest 3 runs more burst-buffer nodes were

used (we fixed the ratio to 33 compute nodes to 1 burst-buffer node).

For the first 5 runs, the figure shows DeltaFS has large but decreas-

ing overheads. This is because those jobs are not large enough to

saturate the burst-buffer node, so the system is dominated by the

extra work DeltaFS does for the index. In the 3 larger runs, the

system bottlenecks on burst-buffer bandwidth, and we start to see

a converged DeltaFS slowdown of about 15%.

5 RELATEDWORK
One important goal of DeltaFS is to replace traditional site-managed

file system deployments [16, 22, 37, 38, 43, 44] with a transient and

server-less file system service. The idea of a transient, server-less

file system originates from our past work on scalable file system

metadata [32, 36, 48, 49]. DeltaFS uses a modified LSM-Tree [31]

scheme to pack file and directory metadata into large data objects

[34, 35]. The initial design of our Indexed Massive Directory were

inspired by PLFS [9, 12, 19] and MDHIM [24]

Server-less file systems [8, 37] are traditionally characterized by

a set of symmetric file servers that are each capable of serving the

entire file system namespace. This architecture is reused by BatchFS

[48] to enable flexible metadata migration and service allocation,

and is extended by DeltaFS [49] to be literally server-less.

The idea of leveraging application-owned resources can also be

applied to data operations, such as storing application data directly

on compute nodes using their local storage [46], or buffering check-

pointing data inside the local memory of each compute node [33]

or on the management of burst-buffer storage [6, 29, 40, 41].

Indexing is a popular means to improve the access performance

for scientific data. ADIOS leveraged parallel indexing scheme to

improve read performance for the Pixie3D simulation code [27, 30].

The indexes are constructed using FastQuery [18], a parallelized

compressed bitmap index similar to the compressed bitmap index-

ing described by FastBit [45]. These techniques were then used

to perform scalable scientific data index creation and in-situ data

analysis. Our goal with DeltaFS similarly indexes VPIC particle data

in parallel; however, DeltaFS provides the streaming MapReduce

derived shuffle to deal with the large degree of entropy in VPIC par-

ticle data and uses bloom filters [11] for quickly building candidate

sets of SSTables.

Multiple projects, including PreDatA [47], SMART [42], and

GLEAN [25], have explored the use of embeddedMapReduce pipelines

for in-situ data analysis. These projects primarily used seman-

tic knowledge about the data to perform indexing and analysis

(whether in-situ or in-transit). DeltaFS differs both in its focus on

constraining the resources used for shuffling and indexing, and

that the MapReduce pipeline exists within the file system, is avail-

able via a POSIX interface, and performs indexing without using

semantic knowledge of the data streaming into the file system.

Byna et al. performed petascale particle simulations using VPIC

for trillions of particles in [13] and [14]. In [14], the authors ex-

perimented with two trillion particles and 2000 timesteps of sim-

ulation to produce about 350 TBs of data (including checkpoints).

Despite abandoning the file-per-process (fpp) model and switching

to a shared HDF5 model, the authors achieved comparable Lustre

throughput.

6 CONCLUSION
DeltaFS is a transient, user-level file system that uses a software-

defined resource allocation to customize available hardware to the

needs of the application at hand. In our past work we have demon-

strated how this approach results in scalable metadata performance

for scientific applications at extreme scale. In this paper we show

our implementation of Indexed Massive Directory as a special di-

rectory type for DeltaFS. By embedding a stripped-down streaming

MapReduce pipeline into the POSIX write path of DeltaFS, we are

able to transparently index massive numbers of files written to a

single directory, and store them as indexed log objects.

We have evaluated the efficiency of this special directory type on

Los Alamos National Lab’s Trinity hardware. By applying in-situ

partial sorting of VPIC’s particle output, we demonstrated over

5000x speedup in reading a single particle’s trajectory from a 48-

billion particle simulation output using only a single CPU core,

compared to post-processing the entire dataset (10TiB) using the

same amount of CPU cores as the original simulation. This speedup

increases with simulation scale, while the total memory used for

partial sort is fixed at 3% of the memory available to the simulation

code. The cost of this read acceleration is the increased work in

the in-situ pipeline and the additional storage capacity dedicated

to storing the indexes. We are working on further optimizing our

techniques, nevertheless in their current state, they already demon-

strate reasonable simulation slowdown during output phases (only

15% slower), which results in a total simulation slowdown of just

about 5%. These results are encouraging, as they indicate that the

output write buffering stage of the software-defined storage stack

can be leveraged for one or more forms of efficient in-situ analysis,

and can be applied to more kinds of query workloads.

ACKNOWLEDGMENTS
The authors would like to thank Phil Carns, Jerome Soumagne, Shane Sny-

der, and Robert Ross for their guidance on using the Mochi software stack
(http://press3.mcs.anl.gov/mochi/), as well as David Nystrom and Cornell

Wright for their advice on the use of LANL software and hardware. This

material is based on work supported in part by the US DOE and Los Alamos

National Laboratory, under contract number DE-AC52-06NA25396 subcon-

tract 394903 (IRHPIT), and by the US DOE, Office of Science, Advanced

Scientific Computing Research (ASCR) under award number DE-SC0015234.

We also thank the member companies of the PDL Consortium (Broadcom,

Citadel, Dell EMC, Google, Hewlett-Packard, Hitachi, Intel, Microsoft, Mon-

goDB, NetApp, Oracle, Salesforce, Samsung, Seagate, Two Sigma, Toshiba,

Veritas, and Western Digital).

http://press3.mcs.anl.gov/mochi/

PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA Q. Zheng, G. Amvrosiadis, S. Kadekodi et al.

REFERENCES
[1] Exascale computing project. http://www.exascale.org.

[2] Hadoop. http://hadoop.apache.org/.

[3] Leveldb. https://github.com/google/leveldb/.

[4] Spark. https://spark.apache.org/.

[5] Trinity. http://www.lanl.gov/projects/trinity/.

[6] Ali, N., Carns, P., Iskra, K., Kimpe, D., Lang, S., Latham, R., Ross, R., Ward, L.,

and Sadayappan, P. Scalable I/O forwarding framework for high-performance

computing systems. In Proceedings of the 2009 IEEE International Conference on
Cluster Computing (CLUSTER 09), pp. 1–10.

[7] Alverson, B., Froese, E., Kaplan, L., and Roweth, D. Cray xc series network.

Tech. Rep. WP-Aries01-1112, Cray Inc., Nov. 2012.

[8] Anderson, T. E., Dahlin, M. D., Neefe, J. M., Patterson, D. A., Roselli, D. S.,

and Wang, R. Y. Serverless network file systems. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles (SOSP 95), pp. 109–126.

[9] Bent, J., Gibson, G., Grider, G., McClelland, B., Nowoczynski, P., Nunez, J.,

Polte, M., and Wingate, M. PLFS: A checkpoint filesystem for parallel applica-

tions. In Proceedings of the 2009 International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC 09), pp. 21:1–21:12.

[10] Bent, J., Settlemyer, B., and Grider, G. Serving data to the lunatic fringe: The

evolution of HPC storage. USENIX ;login: 41, 2 (June 2016).
[11] Bloom, B. H. Space/time trade-offs in hash codingwith allowable errors. Commun.

ACM 13, 7 (July 1970), 422–426.

[12] Bonnie, D. J., and Torres, A. G. Small file aggregation with plfs. Tech. rep., Los

Alamos National Laboratory, 2013.

[13] Byna, S., Sisneros, R., Chadalavada, K., and Koziol, Q. Tuning parallel i/o on

blue waters for writing 10 trillion particles. In Cray User Group (CUG) (2015).
[14] Byna, S., Uselton, A., Prabhat, D. K., and He, Y. Trillion particles, 120,000

cores, and 350 tbs: Lessons learned from a hero i/o run on hopper. In Cray User
Group (CUG) (2013).

[15] Carns, P., Ligon, W., Ross, R., and Wyckoff, P. Bmi: a network abstraction

layer for parallel i/o. In 19th IEEE International Parallel and Distributed Processing
Symposium (April 2005).

[16] Carns, P. H., Ligon, W. B., Ross, R. B., and Thakur, R. PVFS: A parallel file

system for linux clusters. In Proceedings of the 4th USENIX Annual Linux showcase
and Conference (ALS 00), pp. 317–328.

[17] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows,

M., Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: A distributed storage

system for structured data. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI 06), pp. 205–218.

[18] Chou, J., Wu, K., and Prabhat. FastQuery: A parallel indexing system for

scientific data. In Proceedings of the 2011 IEEE International Conference on Cluster
Computing (CLUSTER 11), pp. 455–464.

[19] Cranor, C., Polte, M., and Gibson, G. Structuring PLFS for extensibility. In

Proceedings of the 8th Parallel Data Storage Workshop (PDSW 13), pp. 20–26.
[20] Dean, J., and Ghemawat, S. MapReduce: Simplified data processing on large

clusters. In Proceedings of the 6th Symposium on Opearting Systems Design and
Implementation (OSDI 04), pp. 10–10.

[21] Folk, M., Cheng, A., and Yates, K. Hdf5: A file format and i/o library for high

performance computing applications. In Proceedings of Supercomputing (1999),

vol. 99, pp. 5–33.

[22] Ghemawat, S., Gobioff, H., and Leung, S.-T. The google file system. In

Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(SOSP 03), pp. 29–43.

[23] Gibson, G. A., Nagle, D. F., Amiri, K., Butler, J., Chang, F. W., Gobioff, H.,

Hardin, C., Riedel, E., Rochberg, D., and Zelenka, J. A cost-effective, high-

bandwidth storage architecture. In Proceedings of the Eighth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 98), pp. 92–103.

[24] Greenberg, H. N., Bent, J., and Grider, G. MDHIM: A parallel key/value

framework for HPC. In Proceedings of the 7th USENIX Conference on Hot Topics
in Storage and File Systems (HotStorage 15), pp. 10–10.

[25] Hereld, M., Papka, M. E., and Vishwanath, V. Toward simulation-time data

analysis and i/o acceleration on leadership-class systems. In Proc. IEEE Sympo-
sium on Large-Scale Data Analysis and Visualization (LDAV2011) (Providence, RI,
10/2011 2011).

[26] Inman, J., Vining,W., Ransom, G., andGrider, G. MarFS, a Near-POSIX interface

to cloud objects. USENIX ;login: 42, 1 (Jan. 2017).
[27] Kim, J., Abbasi, H., Chacón, L., Docan, C., Klasky, S., Liu, Q., Podhorszki,

N., Shoshani, A., and Wu, K. Parallel in situ indexing for data-intensive com-

puting. In Proceedings of the 2011 IEEE Symposium on Large Data Analysis and
Visualization (LDAV 11), pp. 65–72.

[28] LANL, NERSC, and SNL. Apex workflows. Tech. rep., Los Alamos National

Laboratory (LANL), National Energy Research Scientific Computing Center

(NERSC), Sandia National Laboratory (SNL), Mar. 2016.

[29] Liu, N., Cope, J., Carns, P., Carothers, C., Ross, R., Grider, G., Crume, A., and

Maltzahn, C. On the role of burst buffers in leadership-class storage systems.

In Proceedings of the 2012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST 12), pp. 1–11.

[30] Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J. Y., Klasky, S.,

Tchoua, R., Lofstead, J., Oldfield, R., Parashar, M., Samatova, N., Schwan,

K., Shoshani, A., Wolf, M., Wu, K., and Yu, W. Hello ADIOS: The challenges

and lessons of developing leadership class I/O frameworks. Concurr. Comput. :
Pract. Exper. 26, 7 (May 2014), 1453–1473.

[31] O’Neil, P., Cheng, E., Gawlick, D., and O’Neil, E. The log-structured merge-tree

(LSM-tree). Acta Inf. 33, 4 (June 1996), 351–385.
[32] Patil, S., and Gibson, G. Scale and concurrency of GIGA+: File system directories

with millions of files. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST 11), pp. 13–13.

[33] Rajachandrasekar, R., Moody, A., Mohror, K., and Panda, D. K. D. A 1 PB/s

file system to checkpoint three million MPI tasks. In Proceedings of the 22Nd
International Symposium on High-performance Parallel and Distributed Computing
(HPDC 13), pp. 143–154.

[34] Ren, K., and Gibson, G. TABLEFS: Enhancing metadata efficiency in the local file

system. In Proceedings of the 2013 USENIX Annual Technical Conference (USENIX
ATC 13), pp. 145–156.

[35] Ren, K., Zheng, Q., Arulraj, J., and Gibson, G. Slimdb: A space-efficient key-

value storage engine for semi-sorted data. Proc. VLDB Endow. 10, 13 (Sept. 2017),
2037–2048.

[36] Ren, K., Zheng, Q., Patil, S., and Gibson, G. IndexFS: Scaling file system

metadata performance with stateless caching and bulk insertion. In Proceedings
of the 2014 International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC 14), pp. 237–248.

[37] Schmuck, F. B., and Haskin, R. L. GPFS: A shared-disk file system for large

computing clusters. In Proceedings of the 1st USENIX Conference on File and
Storage Technologies (FAST 02), pp. 231–244.

[38] Schwan, P. Lustre: Building a file system for 1000-node clusters. In Proceedings
of the 2003 Ottawa Linux Symposium (OLS 03), pp. 380–386.

[39] Soumagne, J., Kimpe, D., Zounmevo, J., Chaarawi, M., Koziol, Q., Afsahi, A.,

and Ross, R. Mercury: Enabling remote procedure call for high-performance

computing. In 2013 IEEE International Conference on Cluster Computing (CLUSTER)
(Sept 2013), pp. 1–8.

[40] Wang, T., Mohror, K., Moody, A., Sato, K., and Yu, W. An ephemeral burst-

buffer file system for scientific applications. In Proceedings of the 2016 International
Conference for High Performance Computing, Networking, Storage, and Analysis
(SC 16), pp. 69:1–69:12.

[41] Wang, T., Moody, A., Zhu, Y., Mohror, K., Sato, K., Islam, T., and Yu, W.

Metakv: A key-value store for metadata management of distributed burst buffers.

In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
(May 2017), pp. 1174–1183.

[42] Wang, Y., Agrawal, G., Bicer, T., and Jiang, W. Smart: A mapreduce-like

framework for in-situ scientific analytics. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(New York, NY, USA, 2015), SC ’15, ACM, pp. 51:1–51:12.

[43] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and Maltzahn, C.

Ceph: A scalable, high-performance distributed file system. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation (OSDI 06),
pp. 307–320.

[44] Welch, B., Unangst, M., Abbasi, Z., Gibson, G., Mueller, B., Small, J., Zelenka,

J., and Zhou, B. Scalable performance of the panasas parallel file system. In

Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST
08), pp. 2:1–2:17.

[45] Wu, K. Fastbit: an efficient indexing technology for accelerating data-intensive

science. Journal of Physics: Conference Series 16, 1 (2005), 556.
[46] Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R.,

and Raicu, I. FusionFS: Toward supporting data-intensive scientific applications

on extreme-scale high-performance computing systems. In Proceedings of the
2014 IEEE International Conference on Big Data (BigData 14), pp. 61–70.

[47] Zheng, F., Abbasi, H., Docan, C., Lofstead, J., Liu, Q., Klasky, S., Parashar,

M., Podhorszki, N., Schwan, K., and Wolf, M. PreDatA - preparatory data

analytics on peta-scale machines. In Proceedings of the 2010 IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2010 (05 2010), pp. 1 –
12.

[48] Zheng, Q., Ren, K., and Gibson, G. BatchFS: Scaling the file system control

plane with client-funded metadata servers. In Proceedings of the 9th Parallel Data
Storage Workshop (PDSW 14), pp. 1–6.

[49] Zheng, Q., Ren, K., Gibson, G., Settlemyer, B. W., and Grider, G. DeltaFS:

Exascale file systems scale better without dedicated servers. In Proceedings of the
10th Parallel Data Storage Workshop (PDSW 15), pp. 1–6.

http://www.exascale.org
http://hadoop.apache.org/
https://github.com/google/leveldb/
https://spark.apache.org/
http://www.lanl.gov/projects/trinity/

	Abstract
	1 Introduction
	2 Motivation
	3 System Overview
	4 Experiments
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

