
2019 Storage Developer Conference. © Carnegie Mellon University. All Rights Reserved. 1

Breaking the Metadata Bottleneck: the
Exascale Filesystem DeltaFS as a LANL and
Carnegie Mellon Collaboration

Qing Zheng
Carnegie Mellon University

Qing Zheng
Chuck Cranor, Greg Ganger, Garth Gibson, George Amvrosiadis

Bradley Settlemyer†, Gary Grider†

Carnegie Mellon University
†Los Alamos National Laboratory

The Exascale Filesystem DeltaFS as a
LANL and CMU Collaboration

Breaking�the�Metadata�Bottleneck:

Everyone Loves Fast Storage

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

DeltaFS: 20,000x faster than FS today

3
Image from http://esp.igpp.ucla.edu illustrating earth’s magnetic field under the influence of the solar wind.

Everyone Loves Fast Storage

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

DeltaFS: 20,000x faster than FS today
How long does it take to

insert 2 trillion particle files
into a fs directory?

57
days

2
mins

OR
4

Existing FS uses Dedicated Resources

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Figure shows CMU’s NASD (OSD) design (now ANSI T10), root of many today’s distributed filesystem designs.

Fi
le

sy
st

em

Cl
ie

nt
s

Salable Object
Storage

MDS
Metadata Server (MDS)

5

MDS often a Bottleneck

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Fi
le

sy
st

em

Cl
ie

nt
s

Salable Object
Storage

MDS

It could take FOREVER to finish all metadata ops

6

MDS often a Bottleneck

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Fi
le

sy
st

em

Cl
ie

nt
s

Salable Object
Storage

MDS

It could take FOREVER to finish all metadata ops

57
days

7

Common Ways for Stronger MDS

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Fi
le

sy
st

em

Cl
ie

nt
s

Salable Object
Storage

MDSA) Better
Representation

B) Better Namespace Partitioning

C) Deeper Layering

8

We Could Build Something Like This

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Fi
le

sy
st

em

Cl
ie

nt
s

Salable Object
Storage

MDS
LSM

M
et

ad
at

a
Ca

ch
e

“MDS 2.0”

Namespace spread across 2 servers

MDS
LSM

LSM-Trees for high write throughput

A caching tier for fast reads

9

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Fi
le

sy
st

em

Cl
ie

nt
s

Salable Object
Storage

MDS
LSM

M
et

ad
at

a
Ca

ch
e

MDS 2.0

Namespace spread across 2 servers

MDS
LSM

LSM-Tree for fast write throughput

A caching tier for fast reads

Need 800 servers if each can do 10 million file creates/s.

Might work but would be

EXTREMELY INEFFICIENT
in delivering 1 trillion file creates in 2 mins

10

Budget is Fixed for Each Machine

More MDS nodes means less compute nodes
MDS not busy all the time

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Compute Nodes
(e.g., 10K)

Storage Nodes
(e.g., 100)

MDS
(e.g., 4)

8009K

11

Budget is Fixed for Each Machine

We blame the bar that separates the nodes
A waste: unable to use MDS nodes to run jobs

A much bigger waste: unable to utilize compute nodes to process metadata

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Compute Nodes
(e.g., 10K)

Storage Nodes
(e.g., 100)

MDS
(e.g., 4)

8009K

12

A BOLD idea: having filesystems run directly on
job nodes (DeltaFS)

Shared Object
Storage

Today: A Dedicated MDS Per Machine

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Job1

Job2

MDS
Img

A shared namespace

Persistent state

14

Better: Dynamically Instantiating MDS for Jobs

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Shared Object
Storage

Job1

MDS1

Job2

MDS2
Img2

Img1
MDS

No dedicated MDS

15

Immediate Benefits from No Dedicated MDS
Simplified cluster design
No need to pool resources for MDS during cluster planning

No false sharing
My cache entries do not get invalidated by someone else’s activities

Highly agile scalability
Larger jobs can devote more resources to MDS

Better resource utilization
Would-be idle CPU cycles can be utilized to process metadata

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved. 16

Does this really work for my
applications?

Three Types of Interaction

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

No sharing
Different jobs access different

sets of files

Concurrent sharing
Multiple jobs read & write a

same set of files

Sequential sharing
One job’s output is another job’s

input

Works trivially today: 1 dedicated MDS, 1 global namespace

But a global namespace is not always required for existing jobs to work

18

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Job1

MDS1

Job2
MDS2

Img2

Img1

Underlying
Storage

Unrelated Jobs Do not Have to See Each Other’s Data

19

Concurrent Sharing? Connect to the Leader
One use case: user monitoring such as “ls -l” & “tail -F”

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Underlying Storage

Job1MDS1
Img1

Job3

Job2 Leader
Follower

Follower

20

Need Another Job’s Data? Just Mount it & Carry on

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Job2

Job1

Img

Underlying Storage

M
OUNT

UN
M

OU
NT

21

Mount Many If Necessary

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Job3

Job1

Img1

Underlying Storage

Img2

Job2

M
OUNT 1

MOUNT 2

22

A namespace is as good as a global
namespace if a job sees all related data

Re-imagining filesystems for
future

Machine-Oriented v.s. Job-Oriented

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

A component of a machine

Always ON, centralized
Uses a fixed set of dedicated nodes
Long-standing
Accessible from every node of a machine
A shared FS image per machine

Runs background activities (e.g.,
reorganizing indexes for fast reads)
One piece of code

A component of a running job

Dynamically instantiated by jobs
Highly agile: scales with job allocations
Transient: lives within a job
Private: accessed only by a job
No false sharing: one per job

No jitters: all background FS work is
scheduled by jobs
Software-defined: code optimized for the
work at hand

25

Machine-Oriented v.s. Job-Oriented

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

A component of a machine

Always ON, centralized
Uses a fixed set of dedicated nodes
Long-standing
Accessible from every node of a machine
A shared FS image per machine

Runs background activities (e.g.,
reorganizing indexes for fast reads)
One piece of code

A component of a running job

Dynamically instantiated by jobs
Highly agile: scales with job allocations
Transient: lives within a job
Private: accessed only by a job
No false sharing: one per job

No jitters: all background FS work is
scheduled by jobs
Software-defined: code optimized for the
work at hand

26

Each job can be viewed as a process group
A group of processes self-found their MDS service

Decoupling MDS from the Machine

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Job

Pr
oc

es
s

1

Pr
oc

es
s

2

Pr
oc

es
s

n

M
D

S…

Job

Pr
oc

es
s

1

Pr
oc

es
s

2

Pr
oc

es
s

n

…

MDS MDSMDS

One option: MDS runs as a separate job process
Decoupled from the machine

Another option: MDS runs as library within processes
Again, decoupled from the machine

27

When a job ends, its FS “service” goes with it
Data stays in the underlying storage

Transient Service, Persistent Data

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Job

Pr
oc

es
s

1

Pr
oc

es
s

2

Pr
oc

es
s

n

M
DS

Job

Pr
oc

es
s

1

Pr
oc

es
s

2

Pr
oc

es
s

n

MDS MDSMDS

28

Underlying Storage

Each Job Acts as a Function

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Creates a new FS image
as output

Takes one or more FS
images as input

λ
1

2

No side effect3
29

Keeping input immutable so that they can be shared in a scalable way

Job

Log-Structured: Each Job Appends Changes to a Log

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Newer changesMetadata log Total “Δ” of state

Input Output

Each FS image essentially a pointer to a logical log

Delta, Diff

30

ch
g1

ch
g3

ch
g4

ch
g2

Turtles All the Way Down
Reading from an FS image is searching through a DAG of “Δ”s

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved. 31

1 3
2

D
A

C
B

Job
Job

D

A

C

B

DCAB

Job

Resolve conflicts using a job-specified ordering

Merging & flattening for fast reads
via log compaction

Order matters

Log compaction reduces search depth & reclaims space
Often time-consuming

User Pays for Speed (by Scheduling Log Compactions)

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved.

Traditional: done by a dedicated MDS
Jitters or wasted work

Better: explicitly scheduled by apps
Predictable high performance

32

Job1

Job2

Job1
Job2

I’ll handle everything:
“meh” speed for everyone

MDS
Optimized for bulk

insertion

MDS1
Job3

Log compaction

MDS2

Fast reads

MDS3

How does my job find its input
data?

It’s All about Mapping Names to Data
User specifies names; a mechanism handles the mapping

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved. 34

LANL’s Cray-1 (left) and Trinity computer (right), https://www.lanl.gov/asci/platforms/index.php

20151976
The good old days: a job control system does

the mapping
Today: a global filesystem namespace does

the mapping

A New Kind of Mapper: Filesystem Image Registry
Works like github.com, jobs “git-clone” their input datasets

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved. 35

Job 2Job 1

One FS image registry
(can be many)

Publish1
Access3

Get info by
name

2

Publication & collection may be automated by workflow engines

Un
de

rly
ing

St

or
ag

e

Img

A manifest, not the image
itself

Which Registry did I Use? Ask a Catalog Service
Is it github.com or bitbucket.org?

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved. 36

A catalog server (again,
can be many) Indexes Subscribe

Job

1
Search2

Get info3

Subscribe

Related talk: LANL’s catalog service GUFI by Dominic Manno
Session 63, 2pm Wed, Lafayette room

Sounds Good. Remind me Why Perf. is Better…
1. More CPUs
Able to use more resources to do FS work
2. More Efficient
No false sharing, less synchronization, better caching
3. Software-Defined
Smart clients, simple storage

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved. 37

Example: Making a Needle-in-a-Haystack Hero

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved. 38

Underlying Storage

12 billion file inserts/s

A job using 100K CPU cores w/ an embedded FS

Up-to 5000x faster queries than bulk scans

Under the hood: a) leveraged idle CPU cycles,
b) deep writeback buffering, c) optimized storage layout

Conclusion
Existing FS clients sync too often with servers
Synchronization of anything global should be avoided at extreme scales

Removing servers forces us to review what’s necessary
Enabling sequential sharing is where filesystems shrine

Need radically different models for shared storage
A job-oriented filesystem scales better in many computing scenarios

2019 Storage Developer Conference © Carnegie Mellon University. All Rights Reserved. 39

2019 Storage Developer Conference. © Carnegie Mellon University. All Rights Reserved. 40

Thank you.

