
GUFI: Fast, Secure File System Metadata Search
for Both Privileged and Unprivileged Users

Dominic Manno∗ Jason Lee∗ Prajwal Challa† Qing Zheng∗ David Bonnie∗ Gary Grider∗ Bradley Settlemyer‡

∗Los Alamos National Laboratory

Los Alamos, NM, USA

{dmanno,jlee,qzheng,dbonnie,ggrider}@lanl.gov

†University of Texas at Arlington

Arlington, TX, USA

{vxc5208}@mavs.uta.edu

‡NVIDIA

Austin, TX, USA

{bsettlemyer}@nvidia.com

Abstract—Modern High-Performance Computing (HPC) data
centers routinely store massive data sets resulting in millions
of directories and billions of files. To efficiently search and sift
through these files and directories we present the Grand Unified
File Index (GUFI), a novel file system metadata index that
enables both privileged and regular users to rapidly locate and
characterize data sets of interest. GUFI uses a hierarchical index
that preserves file access permissions such that the index can be
securely accessed by users while still enabling efficient, advanced
analysis of storage system usage by cluster administrators.
Compared with the current state-of-the-art indexing for file
system metadata, GUFI is able to provide speedups of 1.5× to
230× for queries executed by administrators on a real production
file system namespace. Queries executed by users, which typically
cannot rely on cluster-wide indexing, see even greater speedups
using GUFI.

Index Terms—Parallel query processing, file system metadata
management, file system access control, index sharding

I. INTRODUCTION

High-performance Computing (HPC) data centers provide a

wide variety of data services to meet the demands of diverse

workloads [1, 2]. Specific storage systems are tailored to

provide space for specific services — such as user specific files

("/home"), collaboration spaces ("/project"), bulk data storage

services ("/scratch"), and archival storage services ("/archive")

— such that each service features a separate namespace at a

separate mount point. Storage systems tailored to workloads

are able to provide higher performance than a general-purpose

system [3]. To direct data to the right system, workflows are

constructed to orchestrate data movement between different

data services during each data processing step [4]. While the

specialized nature of HPC storage enables users to efficiently

execute diverse scientific workflows, it also creates a burden

on system users and cluster administrators to efficiently locate

and manage the large amount of files spread across a wide

range of available storage systems.

When the total file count is small, cluster-wide data manage-

ment tasks may be efficiently accomplished by standard data

management tools such as du and find. This is because most

data storage systems today provide a hierarchical namespace

that supports the traditional POSIX file system interface such

that a large amount of common data management queries

can be directly decomposed into individual directory scan and

127

40

17

1.4 0.6

155

24

7
1.0 0.3

0

25

50

75

100

125

150

175

Lustre GPFS NFS Local FS GUFI

find -ls du -s

Fig. 1: Time to query the contents of a Linux kernel source tree using
different file system technologies. Parallel file systems are inefficient
for the small, read-only requests used to query metadata. GUFI
creates an external index that provides local file system like query
experience for distributed file system metadata while continuing
to exercise standard file system permission control. Queries by
unprivileged users continue to be restricted to data for which they
have access permissions while running orders of magnitude faster
thanks to a dedicated, query-optimized index.

file attribute retrieval requests to underlying storage systems’

metadata managers. Over time, irrespective of cluster size,

the files created by each data service grow to huge numbers

and capacities [5]. Modern HPC data centers routinely store

massive data sets resulting in millions of directories and

billions of files [6]. Even though today’s fastest distributed file

system metadata servers are capable of hundreds of thousands

of — or even millions of — metadata operations per second

[7–10], the large amount of small metadata query requests

that must be sent to individual storage systems makes high-

level data management queries increasingly costly, leading to

prohibitive query response times. This is especially so when

queries require scanning files or directories that are not readily

cached in a storage system’s server memory.

Figure 1 shows the performance of common metadata

queries for file systems often available within large HPC

clusters, a local file system, and the GUFI service described

in this paper. Each measurement traverses the 74K files in the

Linux 5.8.9 kernel source tree and shows the time required

to perform recursive directory listings (find -ls) and disk

usage (du -s) for each system’s metadata layer. These utilities

specifically exercise the readdir and stat system calls that

are the building blocks for all file system metadata queries.

Although the file systems all used fast SSDs for metadata

storage and had server-side metadata caching; the parallel file

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

systems, Lustre [11] and GPFS [12], were unable to provide

fast metadata query performance. In this paper we describe the

efficient search algorithms used by GUFI, a metadata index

that is designed to perform file system metadata queries in

parallel and generate the concurrency required to achieve high-

levels of read performance from SSDs (see §III-C).

Existing metadata search solutions that provide low-latency,

searchable indexes for data centers [13–15] rely on database

technologies for high levels of query performance but cannot

be configured to enforce the hierarchical permissions used

by traditional file systems. As a result, these systems cannot

be exposed directly to users without sacrificing POSIX per-

missions. GUFI instead uses a permissions-based sharding of

databases to fully enforce permissions so that users — both

privileged and unprivileged — can securely access indexed file

system metadata. With a cluster-wide user identity control such

as LDAP, GUFI easily allows both regular users and cluster

administrators to perform queries without requiring additional

security schemes to prevent access to private file system and

file data metadata (see §III-A).

Finally, existing file systems and file system indexes [14, 16]

often lack rich schemas that allow for fast, complex queries

across file system metadata and file extended attributes. Due

to the hierarchical nature of file system namespaces many

common queries emphasize summarizing the contents of file

system subtrees or finding the largest files for each user (a set

of queries across sibling home directories) – modern metadata

systems may accelerate quota enforcement systems but provide

few materialized views and indexes to accelerate user queries.

GUFI provides a schema tuned to accelerate hierarchical,

recursive queries for both users and administrators. Further,

the GUFI schema can be extended while in use to accelerate

emergent queries (see §III-B).

GUFI is a single unified index for searching metadata and

attributes across multiple file systems. The index is constructed

by scanning the file systems within a data center and creating

clustered embedded SQL databases that are sharded to en-

force file system permissions. Because GUFI strictly enforces

POSIX permissions it can be directly accessed by users and

administrators. The index GUFI builds accelerates interactive

command line queries and queries generated by a web-based

metadata search across the entire data center. Because the

underlying index is stored in a set of embedded databases

that are accessed with SQL, GUFI supports complex queries

that perform poorly with traditional metadata query tools.

Further, because the shards are SQL based, extending GUFI by

adding tables, joins, and other familiar mechanisms is simple

to accomplish. A unified index sharded by file system access

permissions also enables GUFI to easily parallelize query

processing across all available shards to achieve high levels

of query performance atop fast SSDs.

In addition to accelerating queries by up to 230x compared

to the state-of-the-art the GUFI metadata index provides

additional advantages over existing scalable file systems and

metadata indexes. First, the GUFI system is designed as a

data center-wide service capable of indexing and querying the

contents of all file systems within a data center. Second, a

GUFI index is both composable and decomposable such that

any directory or sub-tree of directories within the index can be

trivially added, updated, or removed as desired by administra-

tors. Third, the GUFI index provides index construction tools

that leverage custom capabilities of common storage systems

to support faster index creation and updates. Finally, GUFI

leverages open source file systems and embedded databases

within its implementation to reduce deployment complexity.

In summary, GUFI makes the following contributions to

improving file system metadata queries:

• An index for enabling the rapid search of file system

metadata that enforces POSIX permissions to provide

secure user and administrator queries,

• A novel index addition that allows extended attributes,

which require additional permissions enforcement, to be

accessed within the same queries,

• A novel database sharding approach that uses file system

ownership and permissions to improve query perfor-

mance, and

• A performance analysis that demonstrates GUFI query

performance in comparison to existing state of the art

indexes.

Paper Organization: Section II describes HPC environ-

ments where GUFI is deployed with a description of the

magnitude of indexed file systems. Section III describes the

technical features of GUFI that enable fast queries and secure

access for non-privileged users. Section IV evaluates the ef-

fective concurrency of GUFI, compares performance with the

current state of the art, and describes GUFI’s performance for

complex queries. Section V describes related work. Section VI

summarizes the GUFI system principles.

II. MOTIVATION

The Oak Ridge Leadership Computing Facility and

Lawrence Livermore National Laboratory compute facility

have described their namespaces as including a billion files

and expect those namespaces to service tens of billions of files

in the near future[5, 6]. Other large-scale scientific computing

sites also produce and store petabytes of data on diverse file

systems with namespaces up to billions of files [17–19]. The

management of extreme file counts is not unique to scientific

computing users with the entertainment industry storing and

processing billions of files [20]. These massive file counts and

the Petabytes of fast storage associated with the file systems

used to match the performance of high-performance comput-

ing platforms has caused administrators to rely extensively on

quotas and automated purging of older data to maintain storage

performance over time [21]. Thus a fast metadata query system

is necessary so that facility users can locate and manage data to

advance their scientific workflows and act as responsible users

of shared storage resources ensuring that the most valuable

data is properly archived and that massive temporary data sets

do not swell to a size that exceeds quotas (causing batch jobs

to fail) or runs afoul of facility capacity and purging policies.

One positive aspect of the strict policy enforcement mecha-

nisms within HPC data centers is that a mature ecosystem of

batch tools has emerged for performing full file system scans.

System administrators run nightly jobs traversing billions of

files to calculate usage statistics and locate stale file system

data slated for removal. Further, many local and distributed

file systems provide administrator-only utilities supporting fast

namespace scans to support these jobs. For example, IBM’s

Information Lifecycle Management libraries provide a fast in-

ode scan for Spectrum Scale [22] and similar capabilities exist

for other distributed storage systems [23–25]. Building schema

and indexes that effectively leverage the output of these fast,

administrator-only scanning technologies and creating user-

accessible query tools is a critical component in enabling agile,

policy-compliant data management systems for scientific data.

One critical question is: why can’t users simply perform

queries directly using the scalable metadata plane provided

by distributed file systems? As described in Section I, dis-

tributed metadata services are typically tuned to provide the

highest performance for creating or opening the newest files

from thousands or millions of processes simultaneously. More

broadly, fast parallel file systems are designed to provide

scale-out performance. While scalable performance is an asset

when a scientific application is simultaneously creating and

opening a file from 1 million cores, it is of no practical

use when a user is trying to search a several million file

subtree for a single name from an interactive shell. Parallel

search tools that use thousands of compute cores to search

for existing files [26, 27] are impractical due to the inefficient

use of compute resources. First, these tools consume valuable

compute platform time performing basic file system operations

rather than using the capability of modern processors to

advance scientific simulations and AI-based discovery. Second,

these parallel jobs must be scheduled through a batch-oriented

resource manager (e.g. the Slurm Workload Manager) and

may require hours waiting in a queue before job execution.

Modern parallel and distributed file systems are not designed

to support the type of efficient, interactive queries required

for scientific data management and thus additional tooling is

required to provide powerful metadata query capability for

HPC data centers and facilities.

The obvious solution for building a queryable metadata

resource is to leverage database technology. However, one

important difference between databases and file systems is

the granularity of access control. File systems support a

fine-grained approach to permissions that enables users to

create files and directories and also control which other users

and groups of users are allowed to access those files and

directories. Critically, when a directory is marked as private

by a user no other regular user can determine any information

about the contents of that directory. This includes being

unable to access the names of files within that directory or

even knowing if the directory contains files. This type of

access control enforcement is difficult to accomplish with

database technologies and requires row-level security typically

available in enterprise-class Relational Database Management

GPFS HPSSNFS Lustre1 Lustre2 Lustre3

Server

Client

GUFI

Custom

FS Scanner

GUFI

Custom

FS Scanner

GUFI

Custom

FS Scanner

GUFI

Custom

FS Scanner

GUFI

Custom

FS Scanner

GUFI

Custom

FS Scanner

Pull

GUFI Query

Tools

GUFI Index Builder

SSH / HTTP

Index
/

…
GPFS HPSS

DB DB

A

B C
DB

DB DB

D

E F
DB

Fig. 2: GUFI system overview. A dedicated server periodically pulls
metadata from a set of source file systems, builds indexes as a
hierarchy of DB files, and securely processes queries from clients.

Systems. State of the art row-level security mechanisms result

in approximately a 30% performance loss for queries and a

20% performance loss for database updates [28]. An ideal

file system metadata querying tool imposes no security-related

slowdowns for enabling user-level queries and should instead

improve performance by searching only over file system

contents a user is able to access rather than performing a scan

across all file system entries.

III. GUFI DESIGN AND IMPLEMENTATION

File system metadata indexes provide two operational bene-

fits to data centers. First, a fast, searchable index makes locat-

ing data and orchestrating the movement of data between file

systems easier. Second, it moves metadata-intensive queries

away from highly-optimized mission-critical file systems and

instead directs those queries to a dedicated interactive metadata

resource which can significantly reduce performance loss for

large parallel jobs [29]. The GUFI index is created to exceed

those basic benefits by a) being specifically designed to encode

permission information within a file system metadata and

extended file attributes index such that the resulting index can

be directly and efficiently queried by users (Section III-A), b)

providing a rich schema that enables fast data retrieval for the

types of queries common across file system subtrees (Section

III-B), and c) using a set of algorithms that both reduce the

amount of data accessed per query and effectively achieve

high levels of performance that match the speed of today’s

fast SSDs (Section III-C).

A. GUFI Architecture Overview

As shown in Figure 2, the GUFI indexing system consists

of a server, interactive query clients, and a set of generic or

custom file system scanners (or tree walkers). The server stores

all indexes, which are a collection of embedded database files

stored in a hierarchy of file system directories on one or more

local SSDs. These embedded databases are periodically rebuilt

by an GUFI index builder that pulls metadata from a given set

of source file systems using either a generic or a custom file

system scanner that is optimized for that file system. The index

builder runs on the server. Scanners in most cases run as a

privileged process on the metadata server of a given source file

system. Client searches are performed by tools sending queries

to the GUFI server. The server processes the queries. To

Source Tree X

d f g

B

qpm

K

Source Tree Y

J

/Search

B H K

/

H

d,e,f,g f

c
ce

A J

m,p,q

A

e

Fig. 3: Index creation overview. Each source tree is recreated, with the
same directory structure, permissions, and owners. Directory, file, and
symlink metadata are placed into embedded databases and multiple
indexes can be created under the same path (e.g. /Search), allowing
multiple file systems to be searched simultaneously.

fully utilize available storage bandwidth, each query is divided

into a large number of sub-queries concurrently executed on

the hierarchy of databases stored on the server. By storing

the databases in a hierarchy identical to the original source

file systems, GUFI is able to enforce the same hierarchical

permission scheme used by those file systems and by using

databases supporting standard SQL queries GUFI can provide

rich capabilities for querying file system metadata.
1) Secure Indexes for System-defined Metadata: POSIX-

compliant file systems provide a hierarchical view of the

information stored within the file system as directories, sub-

directories, and non-directory entries. One commonly mis-

understood aspect of POSIX file permissions is how access

to metadata entries is controlled. Permission to stat a file or

directory (or list its extended attribute name) only requires that

every parent directory of that entry must be searchable by the

user. There is no requirement that the entry itself be readable

(though access to extended attribute values does require the

entry’s read bit to be set). Implementing the hierarchy of

search bit checks in user space is difficult to accomplish

efficiently and requires a careful reproduction of the kernel-

enforced file access controls by a privileged process.

As shown in Figure 3, GUFI reuses the operating system file

system permissions enforcement and recreates the directory

structure of the source file system within the index. File,

directory, and symbolic link metadata, such as uid, size,

and access permissions, are stored within a single embedded

database file stored in each directory of the index. The em-

bedded database functionality is provided by the open-source

SQLite library [30]. Notably, the entire GUFI index is simply

a collection of database files and directories and it can be

managed just like a collection of files and directories. System

tools that support snapshots, archives, file transfer tools, and

even version control all work seamlessly with the GUFI index.

Because GUFI is an index of only metadata, multi-billion file

storage systems have resulted in indexes on the order of a few

hundred of Gigabytes.
2) Secure Indexes for User-defined Metadata: Extended

attributes (XAttrs) are a POSIX feature that enables a name-

value pair to be added to files and directories. Extended

attributes are increasing in importance within HPC as data

centers begin to support increased data labeling efforts for AI

workloads. Although XAttr names are protected identically

to system-defined metadata, XAttr values must be protected

like file data. Storing XAttr data securely within the index is

complex and relies on the following rules:

• A directory’s XAttr values are stored within the primary

embedded database stored within that directory.

• Any file with identical permissions to its parent directory

has its XAttr values stored within the primary embedded

database.

• For files with ownership that does not match the parent

directory a per-user embedded database is created (owned

by the respective UID with the GID set to none) to store

all XAttr values accessible by that user.

• For files with a group that does not match the parent

directory two per-group embedded databases are created

(owned by the none UID with the GID set to the

respective group). One database is used to store group

readable XAttr values and another is used to store XAttr

values with group read permissions removed.

By setting the ownership and group on the per-user and per-

group embedded databases users can only read XAttr values

they have access to. We allow users to access all XAttrs

stored with their own UID, including those that they do not

currently have an enabled read permission. File owners can

trivially change their file’s permissions on the source file

system and thus preventing access to those XAttrs does not

increase true security posture. However, as described above,

we create two per-group databases to separate XAttr values

that are accessible and inaccessible because of group read

permissions. In Section III-B we describe how the query tool

uses a single database view to aggregate metadata and unique

XAttr name-values for each file accessible by a user.
3) Index Creation Tools: In order to construct input data for

GUFI it is necessary to perform a metadata scan of each source

file system included within the index. This scan is performed

as a privileged user to ensure that permissions do not prevent

access to any parts of the source file system.
In the worst case, the time to create an input data set for an

index requires a full tree walk of the source file system which

is performed within the source file system metadata servers to

minimize access latency. Naive scan tools may take several

hours to scan billions of files and directories. Fortunately,

many local and distributed file systems provide administrator-

only utilities that provide faster namespace scans. The GUFI

toolset includes scanners that leverage those interfaces if they

are available. For example, GUFI leverages IBM’s Information

Lifecycle Management libraries to provide a fast inode scan

for Spectrum Scale [22]. Similar capabilities exist for other

storage systems [23–25]. For network file system implemen-

tations that provide snapshot capabilities, such as WAFL [31]

and ZFS [32], the GUFI scan tools leverage a consistent

snapshot to produce an accurate index of the metadata state.

However, even with custom scan tools that can perform scans

in minutes rather than hours, the GUFI index must be at

least several minutes old if a scan of the active metadata

system is performed. Specifically, large data movements that

are in process during source file system scans will not be well

characterized.

TABLE I: Examples of file system scanning and index creation times.
All scans were performed using a single node (either via client mount
or running on the metadata server directly). The measured times are
not directly comparable because the concurrent load and hardware
platforms are not equal. In the most basic case GUFI relies on a
threaded breadth-first tree walk to scan source file systems. Only
one file system (Scratch1) was configured to use the lazysize mount
option and relied on an underlying format compatible with lester
[33]. When tree walks must be used to scan larger file counts the
scanning processes can be distributed across multiple clients. Index
creation either occurs in-situ (concurrent with the scan) or as a post
processing step after the scan.

Filesystem Type Dirs Files Scan

Type

Sampled

Scan

Time

Index

Creation

Time

/users NFS 6.1M 43M Tree Walk 50m In-Situ
/proj NFS 35.7M 263M Tree Walk 133m In-Situ

/scratch1 Lustre 7.4M 102M Lester 19m 158s
/scratch2 Lustre 16.5M 225M Tree Walk 216m In-Situ
/archive HPSS 5.7M 193M SQL 125m 229s

In order to update stale index data GUFI includes a tool that

enables a user to request an immediate update to the index

and directory permissions for a single directory. This tool was

designed for file transfer utilities used to migrate data between

file systems. However, it has since been used to support cases

where a user realizes they have exposed sensitive information

within metadata and must immediately enforce a change of

visibility or metadata contents. In this case the tool is used to

trigger an immediate index update and preserve user-enforced

security for metadata visibility.

4) Online Index Updates: The GUFI index updates are

based on a pull process that retrieves the most up to date

source file system scans at a configurable interval. Based on

the scan times shown in Table I our facility uses an index

update interval of 4 hours. This update frequency was based

on the practical rate at which the slowest source file systems

could be scanned without requiring a large number of client

nodes to perform scans. Large numbers of nodes participating

in the scan are more likely to result in large metadata loads that

affect batch jobs running within the data center. Some source

metadata systems, for example large tape archives where the

SQL-based scanning technology cannot be parallelized, may

not be able to produce a full trace within the interval window.

In this case GUFI pulls and applies the most up-to-date

completed scan data to the index. Fortunately, in many cases

index creation can be effectively overlapped with the scan and

thus the pull process is able to retrieve a fully created GUFI

index. Even in the case where the index is constructed as

a post processing step at the GUFI server the creation time

is inexpensive because we rely on the performance of local

file systems to create and store the index. As the last column

in Table I shows our commodity servers using in-kernel file

systems (e.g. XFS [34]) are able to create 1M directories with

databases in approximately 18 seconds and insert 100M index

rows in less than 120 seconds. The update process is a rename

of a symbolic link that points at the new index to overwrite

the symbolic link pointing at the stale index allowing existing

queries and new queries to make progress simultaneously.

While bulk scanning drawbacks are significant, having two

complete namespace snapshots available that are separated by

a few hours also enables new query types that can passively

measure data movement within and between file systems.

Further, within many cloud and HPC data centers the largest

driver of namespace and data mutations are parallel batch jobs

executed non-interactively by a scheduler and users are aware

that even on live file systems namespace queries include out-

of-date data.

GUFI Server

S
S

H

A

B C

D

E F

Index

Builder

Query

Runner

Index

Source Trees

GUFI Client

Command

Line

Web UI

H
T

T
P

httpd

DB DB

A

B CDB

DB DB

D

E FDB

/
Pull

Fig. 4: GUFI deployment. Indexes are built and updated at regular
intervals. Users perform queries using a web interface or scripts that
SSH into the server. Users are not expected to log into the server
through interactive terminals.

5) Index Access Controls: Because GUFI implements a

single shared index for the entire data center – including

for administrative use – it is critical that the index is not

corrupted by users. Thus access to the index must be read-

only for users even though the index directory permissions

includes read and write permission settings (preserving the

original directory permissions is critical to generating correct

query results). One solution to providing read-only access to

the index is to perform a read-only mount of the index directly

onto client systems. However, during deployment a read-only

mount led to user confusion as duplicated directory trees are

available with source directories containing files and identical

index directories that contain embedded databases. We also

developed a FUSE interface for GUFI but were unable to

achieve satisfactory query performance.

Figure 4 shows how the index is currently deployed within

the data center to enable remote, read-only access while

supporting access via the parallel toolset. Each client node that

has access to the index creates an empty directory (typically

named /search) that can be used as input to the GUFI command

line tools. When a user directs a gufi_find or gufi_ls

at the /search directory, the index is consulted by sending a

remote invocation from the client node to a server that hosts

the index. This access is secured using a restricted shell that

allows only GUFI tools to be invoked at the server. Web access

interacts similarly, with the user’s web browser requesting

authenticated access to a search prompt and sets of pre-

generated queries are available that describe various metadata

characteristics such as the user’s largest files and their most

recently accessed files. Every query requires full authorization

with the authentication service (e.g. LDAP) so that changes

to the user’s access rights are registered immediately and all

queries obey the most up-to-date system access privileges.

Entries TableSummary Table

Dir Name Proj1

Dir Inode Num 23

Dir UID 7

Dir GID 0

Total Files 3

Min-Max UID 0-7

Min-Max GID 0-1

P
e
n
trie

s
V

ie
w

File

Name

Inode

Num

UID GID Mode …

a.out 624 0 0 644

main.cc 56 7 0 644

1.log 334 2 1 400

PInode

23

23

23

Fig. 5: Index schema for GUFI. The pentries view provides parent
inode as a column alongside the entries table.

Finally, to prevent regular users from performing queries

that modify the live GUFI schema all of the query tools that

are user facing can only open the embedded database files with

the read-only flag (O_RDONLY). While the ability to modify

the database schema is a powerful capability, we only allow

administrator query tools to open database files with the write

flags required to enable that feature.

B. Index Schema

The database schema was constructed to efficiently answer

many types of queries and provides three types of SQL record

holding tables:

• entries: A table to store the metadata about about each

directory entry (files and links).

• summary: A table that describes current directory as

well as the characteristics of the current directory’s en-

tries.

• t[ree]summary: A table that summarizes the character-

istics of the entire tree starting at the current directory.

While the entries table is a reproduction of the metadata

attributes commonly associated with directory entry inodes,

the two types of summary tables merit further description.

The summary table describes information about the current

directory including the minimum file size, maximum file size,

number of files, and total directory size in addition to the

directory’s own metadata. The additional data provided by the

summary table significantly reduces the costs of common

queries seeking to determine how much space a sub-tree

uses or to locate the smallest/largest file within a sub-tree.

tsummary tables are not created by default as the index is

constructed. Instead the administrator must trigger the process

to build each one. The resulting table summarizes the sizes,

user counts, group counts, and additional information for every

file and directory beneath the table. Both summary and

tsummary tables can have overall, per-user, and per-group

records thus making per-user or per-group summary queries

extremely efficient as well.

GUFI also provides persistent views of tables with altered

schemas to make query construction simpler. One such view

is the pentries view which, as shown in Figure 5, is the

entries table augmented with the parent inode column.

Because the index is stored within embedded SQL databases

there are few practical limits to what fields can be added

to the index. The same tools that query the index can be

used to add tables and views or alter the schema. While we

don’t expect many administrators to take advantage of this

capability, it is straightforward to copy an index to a scratch

location, recursively modify the schema to support a custom

query, and include that change as part of a process similar to

the tsummary construction.

1) Extended Attribute Schema: XAttr names are stored as

a list within a column in the entries table. The XAttr table

schema is a table containing 2 columns: the entry’s inode

that the XAttr is associated with and an XAttr value list.

Tables with this schema are not queried directly. Rather, a

view of all unique accessible XAttrs is created by performing

a union on the directory database’s XAttr table with all

successfully opened per-user and per-group XAttr database

files within the current directory. Per-user and per-group XAttr

databases that the user is unable to open are not accessible

and thus not included within the dynamically constructed

database view. Because different users will generate different

views, we do not provide persistent views of the XAttrs.

For convenience, we automatically generate temporary views

combining entries, pentries, and summary with the

XAttrs view.

As an optimization, an additional table is created in the

directory’s database during XAttr indexing that keeps track

of the per-user and per-group XAttr database files that were

generated. This removes the need to traverse the directory in

search of XAttr database files to attach.

C. Parallel Index Algorithms

GUFI provides parallel versions of tools that reproduce the

behavior of common file system utilities, a web interface that

provides a search bar and a set of utilities for building and

managing the index. These tools are all built on a parallel tree

descent code base that is designed to open directories and files

rapidly while performing data aggregation at multiple points

during request processing. This code base descends file system

trees in breadth-first order with each directory being processed

by a single thread and sub-directories added to a queue for

subsequent processing by the thread pool.

1) Source File System Scans: The source tree scan pro-

cesses the directories of the source tree in breadth-first order

in order to build a list of all databases to create in parallel. As

each directory is added to the work queue a single thread is

assigned to process the contents of each directory. To convert

these processed trace files into directories and databases, GUFI

provides a parallel ingest tool that creates directories as-needed

while inserting entries into the embedded databases. GUFI also

provides a parallel ingest tool that skips the list building stage

and generates databases as source directories are encountered.

2) Parallel Index Queries: The gufi_query executable

directly accesses the GUFI index and is used to build tools

such as gufi_find and gufi_ls. Because the permissions

of the directories are preserved within the index structure,

the query tools only search (in breadth-first order) databases

which the user can access. Thus, user query performance is

proportional to the amount of metadata that is accessible to

the user rather than the amount of data that is stored within

File

Name

…

1.log

~1.log

File

Name

…

exp1.cc

File

Name

…

exp2.cc

DB DB
File

Name

…

exp2.cc

DB

Dir.X

Dir.Y Dir.Z

(a) Without rolling up, traversal of
this index requires 3 threads, 3 dir
opens, and 3 DB opens.

File

Name

… PInode

1.log Dir.X

~1.log Dir.X

exp1.cc Dir.Y

exp2.cc Dir.Z

File

Name

…

exp1.cc

DB DB
File

Name

…

exp2.cc

Dir.Y Dir.Z

DB

Dir.X

(b) With rolling up, traversal of this
index requires only a single thread,
a single dir open, and a single DB
open.

Fig. 6: Comparison of traversing an unmodified index and an index
that has been rolled up.

the entire index. Further, since the index schema includes

summary information many queries do not need to access more

than the pre-computed summary tables.

Query processing begins at the user provided directory, the

sub-directories of the provided directory are discovered and

pushed into the thread pool for processing. Then, SQL queries

provided to gufi_query are executed on the discovered

directory databases. Complex SQL queries requiring advanced

operations such as aggregation, uniqueness checks, and reduc-

tion operations are supported. Further processing may be done

within gufi_query to aggregate results between queries

instead of printing results from each directory’s database as

they are discovered. The per-directory results are written to

per-thread in-memory databases to avoid contention resulting

from multiple threads inserting into a single database. After

index traversal has completed, a user provided SQL query is

executed to merge the per-thread result(s) into a single set of

results. A final user provided SQL query is then run on the

merged results to print out the final result(s).

3) Permissions-based Sharding: By default, a GUFI index

replicates the shape, ownership, and permissions of the source

tree directories. While this scheme makes enforcing metadata

access controls simple, the database per directory scheme often

results in millions of small databases which are inefficient to

query. To improve performance, GUFI identifies opportunities

where an entire sub-tree of directories have compatible access

rights and merges the data from the sub-directories into the

database in the parent directory. When the access rights of

a sub-tree are compatible with access to the database at the

top of the sub-tree the sub-tree entries can be merged into

the top-level database which then summarizes a larger amount

of metadata. This optimization both reduces the number of

databases accessed during queries and increases query request

sizes when compared to reading many smaller databases. We

call this merge operation a GUFI index rollup.

In order for a target directory rollup to be valid, two

conditions must be met. First, all of the sub-directories below

the target directory must be rolled up. 1 Second, all target

directory and sub-directory pairs must have permissions that

satisfy any one of the following conditions:

1) World readable and executable (i.e. o+rx is set)

1Leaf directories are, by definition, considered rolled up.

2) Matching permissions (user, group, and others), with the

same user and group

3) Matching user and group permissions, readable and

executable (ug+rx) with the same user and group, and

not world readable and executable (i.e. o-rx is set)

4) Matching user permissions, readable and executable

(u+rx) with the same user, and not group or world

readable and executable (go-rx)

If a directory does not fulfill the above conditions, its

summary table is marked to indicate that it is not rolled

up. If a directory can be rolled up, the directory’s database

is modified. The pentries view is dropped, and replaced

with the pentries table with identical columns and contents

as the original view. The pentries table of each sub-

directory is then copied in. This allows for the rows of the sub-

directories to be inserted into pentries without corrupting

the original data located in the entries table. Each sub-

directory’s summary table is copied into the directory’s

summary table, with the directory’s name prefixed to the

sub-directory’s name and is marked as not being the original

row in the table. The directory is then marked as having been

rolled up. This series of operations is performed recursively

up the tree. Rollup of per-user and per-group XAttr databases

is performed similarly using the same permission checks used

for rollup XAttr databases.

The databases and directories that are rolled up are not

removed. This has two useful effects. First, because all of

the original directories exist and contain rollup data, queries

can start at any directory and take advantage of the rollups that

exist within that subtree. Second, if a rollup needs to be undone

(for example, to perform a user-requested directory update for

an index that has already been rolled up), the process to do

so is more lightweight than recreating the entire subtree. In

addition to not recreating each directory of the subtree, each

directory’s rollup can be independently undone due to not

having any dependency on any other directory’s rollup data.

The steps for removing a directory’s rollup are as follows:

drop the pentries table, restore the pentries view, and

delete the rows in the summary table that were not originally

there.

IV. EVALUATION

We have implemented GUFI using 14K lines of C code.

We perform four sets of experiment to evaluate GUFI. We

first show that GUFI is able to transform high-level data

management queries into concurrent, low-level disk reads that

are parallel enough to fully saturate one or even more un-

derlying SSDs, effectively converting a traditionally non-disk-

bottlenecked workload to be disk-limited. Metadata queries

are traditionally not limited by disks due to remote pro-

cessing (metadata is accessed through clients sending RPCs

to servers), concurrency control (which tends to serialize

concurrent metadata requests for atomic execution), and the

use of on-disk layouts that are primarily optimized for per-file

inode accesses. As a result, today’s metadata storage servers

are often unable to keep disk command queues full, causing

TABLE II: Evaluation configurations. The hardware, software, and
data set used to perform the GUFI evaluations. The data sets were
extracted from real file systems within an HPC data center.

Server HPE DL380
Processor Dual Intel Xeon 8280 2.7GHz

(56 total cores, 112 threads)
Main Memory 192GiB

Storage 4x Samsung 1725A 1.6TB
Operating System CentOS 7.7.1908

Kernel Version Linux 5.7.9
File System XFS

Dataset 1 1.6M directories, 13.2M files
Dataset 2 2.2M directories, 64.7M files

available disk bandwidth resources to rarely be fully utilized

to enable rapid query performance. By establishing a separate,

sufficiently sharded index using a set of compact SQLite

databases clustered on a single, dedicated storage server and

by allowing both regular and administrative users to directly

log onto that server for query execution, we show that GUFI

is capable of generating a much more parallel workload that

more effectively exposes underlying SSD capabilities.

Next, we focus on GUFI’s permission-based rollup mecha-

nism and perform sensitivity tests to measure its effectiveness

in reducing final index size and preventing an excessive

amount of small SQLite databases which tend only to reduce

query performance.

Our third set of experiments involve micro benchmark tests

that use extended file attribute queries as a proxy to measure

and compare GUFI’s query performance with XFS, the current

state-of-the-art for local file system metadata management.

Finally, we perform macro benchmark tests on GUFI using

a real production file system namespace and compare its

performance with Brindexer [15], one of the current state-

of-the-art technologies for file system metadata indexing.

Brindexer relies on many of the same technologies as GUFI,

including SQLite and parallel query tools that rely on a

thread per database to execute queries with a parent process

merging the results of each thread. Unlike GUFI, Brindexer

uses a hash-based data partitioning scheme that uses the parent

directory of each file to hash the metadata entry to one of 256

embedded databases. Brindexer is reported to be the highest

performing file system metadata index. It currently cannot

enforce standard user-oriented permission access control.

Table II shows the hardware configurations, system software

versions, and the data set characteristics used for the evaluation

experiments. Dataset 1 was generated by running GUFI scan

on an NFS file system and anonymizing the output. Dataset 2

was generated by GUFI scan on a Lustre file system within

an HPC data center and includes all of its real metadata. Our

evaluation focuses on GUFI’s query performance. For each

experiment run, the GUFI index is stored on a local XFS

file system [34]. A modified SQLite [30] 3.27.2 (enabling

optimized read-only access) was used to implement GUFI’s

embedded databases.

2%

7%

25%

72%
92% 94% 95% 95%

0.05

0.1

0.2

0.4

0.8

1.6

3.2

6.4

12.8

25.6

1 4 16 56 112 224 448 896

D
is

k
 U

s
a

g
e

 (
G

B
/s

)

GUFI Threads

GUFI

Avail Disk Bandwidth

(a) Single-SSD Performance

3.03

5.26 5.82

0.05

0.1

0.2

0.4

0.8

1.6

3.2

6.4

12.8

25.6

1 SSD 2 SSD 4 SSD

D
is

k
 U

s
a
g
e
 (

G
B

/s
)

Available SSDs

(b) Multi-SSD Performance

Fig. 7: GUFI transforms file system metadata queries into massively
parallel bulk disk reads fully exposing the potential of one or even
more underlying SSDs for rapid query performance until the host
server becomes a performance bottleneck.

A. Underlying Disk Utilization

To attain high query performance, GUFI creates one

database per directory and uses a pool of threads to process

each database in parallel resulting in high levels of concurrent

disk read operations. To demonstrate GUFI’s effectiveness in

fully utilizing an underlying SSD, we use dataset 1, an GUFI

index constructed from a production home file system that

has been anonymized. Because the anonymized file names and

users are no longer representative of the original namespace

we only use this dataset to evaluate hardware utilization. We

vary the GUFI thread pool size from 1 to 896 (numa-aligned

with the host processor which had 28 CPU cores). To collect

the disk usage achieved by GUFI we first drop all caches

and then use a block tracing program to capture disk accesses

during each query. Figure 7a shows that in the case where the

index is stored on a single SSD, sufficient concurrency can be

achieved using 112 threads to effectively saturate the disk.

In Figure 7b we increase the available storage performance

ceilings to 6.4 and 12.8 GB/s by using two and four SSDs

respectively. With two SSDs we again see that GUFI gen-

erates a high level of disk read performance resulting in

a disk throughput of 5.26 GB/s (82% utilization). On the

other hand, with four SSDs we supply substantial surplus

disk performance that the index is unable to use due to

the host server becoming a performance bottleneck. In order

to use four SSDs effectively GUFI may be configured with

two index servers each with two SSDs. However, multi-host

configurations are beyond the scope of this evaluation section

and results presented in the remainder of this section use the

GUFI server configured with two SSDs and 224 threads.

B. Permissions-based Database Rollups

Although a single GUFI index is capable of returning

metadata at rates approaching disk speed limitations for a

single host, it is still important to leverage the rollup process

within GUFI. This is because rollups address four sources of

index processing overhead: time spent opening databases, time

spent reading database metadata, time spent setting up queries,

and small average disk read sizes. For our system configuration

(which uses fast processors, fast SSDs, and fast local file

systems) open performance, request sizes, and query setup

1

10

100

1000

10000

None 10K 100K 250K 1M 10M MAX

T
im

e
 (

s
)

Rollup Limit

GUFI Rollup GUFI Query

(a) Rollup and query times

511

175
129

194

0

100

200

300

400

500

600

None 250K MAX Brindexer

B
y
te

s
 /

 E
n

tr
y

Rollup Limit

(b) Space overhead

0

32

64

96

128

160

192

224

256

0 2 4 6 8 10 12 14 16 18 20

E
ff
e

c
ti
v
e

 C
o

n
c
u

rr
e

n
c
y

Run Time (s)

GUFI-None

GUFI-MAX

GUFI-250

Brindexer

(c) Concurrency over time.

Fig. 8: Rollup limit tradeoffs. In (a) we show the performance of the rollup process at multiple rollup limits and the performance of a simple
query with the resulting index, in (b) we see how well the database space overhead is amortized at 3 GUFI rollup limits and for the Brindexer
index, and in (c) we show thread completion times and how a small number of large databases lead to lower effective concurrency.

times are not significant bottlenecks; however, even an empty

SQLite database includes 12KB of data that must be read.

Without any rollup process a source file system namespace

containing 1 million directories will result in 12GB of database

metadata that must be read and processed along with GUFI

queries. Compared with existing indexes such as Brindexer

that hash data across typically only a few hundred databases

per file system, GUFI— without any rollups — may result in

100× as much data retrieved for every query.

To evaluate the effectiveness of rollups we ran them against

5 production file system namespaces ranging from home,

project, scratch, and archival storage spaces (see file system

counts in Table I). Our measurements showed that rollup

achieves an average of 386x reduction in the number of

databases compared with an GUFI index without an rollup.

The largest reduction was observed at a home space (741x)

while the lowest rollup rate was seen at a project storage space

(77x) due to a more diverse spread of user-group-permission

combinations.

While being vital in reducing the cost of processing each

database, rollups can also reduce performance if insufficient

concurrency is available after the rollup. Figure 8 creates

indexes using the dataset 2 production scratch file system to

show the tradeoffs that exist within the GUFI rollup process.

The NONE index has not been rolled up while the MAX rollup

has had no limit placed on its rollup process. Figure 8a shows

the time required to perform the rollup process at a variety of

rollup limits and the effect of that rollup limit on execution

time for a simple query. We dropped all caches before each

measurement and report the average time across five runs.

At rollup limits greater than 10K entries the rollup process

requires between 367 to 485 seconds. In particular, we note

that a rollup limit of 250K entries results in the lowest rollup

time (367 seconds) and the lowest query time (2.6 seconds).

Figure 8b shows the per-entry index cost across different

rollup configurations. For reference we also include the space

overhead of Brindexer which hashes index entries across 256

databases. As expected, we see that as the rollup limit is

increased the total number of databases is reduced and the

Bytes/entry is similarly reduced. The reason GUFI 250K

and GUFI MAX — which have larger database counts than

Brindexer — have lower total database sizes is that for

Brindexer it is necessary to store full parent directories for

each entry while GUFI does not require this overhead: GUFI’s

sharded databases preserve the structure (and the permission

information) of the source directory tree.

Figure 8c shows the effective concurrency when requesting

224 threads for use by GUFI to complete a query that touches

all files. The line shows the time when each thread completes

the last database it is able to process with GUFI. We see that

although GUFI NONE is able to keep effective concurrency

high, the large amount of index data that it has to open and

read result in nearly 18 seconds to perform the query. On the

opposite end of the spectrum we see that GUFI MAX has

the lowest amount of data to process, but the large amount of

time required to process a single large database dominates the

8 second execution time.

Both GUFI 250K with 224 threads and Brindexer with

256 threads (i.e. thread per database) are able to achieve a

better balance of space overhead combined with high levels

of effective concurrency. In addition to having lower database

overhead GUFI 250K also exhibits better effective concur-

rency. Because the Brindexer scheme uses a hash of the parent

directory to distribute data to individual databases and large

directories are true outliers, being both very large and very

uncommon, the Brindexer database sizes range from 24MB

to 80MB. GUFI 250K results in 34K databases where the

largest database after rollup is only 29MB leading to greater

effective concurrency and lower overall execution time. For

all remaining performance tests we use the GUFI index with

rollup databases limited to 250K entries.

C. Extended Attribute Query Performance

Next, we evaluate the performance of GUFI’s extended

attribute query capability. To establish baseline performance

we use a standard XFS file system on the same server as

the GUFI index with the file system stored on a single SSD

(query performance for XFS was not improved by striping

across two SSDs). We began with dataset 2, an unmodified

index of a scratch filesystem with 2.2 million directories and

64.7 million files and we have added extended attributes to the

index. Tree-1 has 25% of the total files populated with XAttrs,

Tree-2 has 50% of the total files populated with XAttrs, and

Tree-3 has XAttrs specified for 100% of the files. While the

269 271 274
178 187 171

9
12

22

1

5

25

125

625

3125

Tree-1 Tree-2 Tree-3

Q
u

e
ry

 T
im

e
 (

s
)

XFS XFS (xattr-only) GUFI

(a) XFS vs GUFI on Scans

9
12

22

4 4 4

1

5

25

125

625

3125

Tree-1 Tree-2 Tree-3

Q
u

e
ry

 T
im

e
 (

s
)

GUFI GUFI (Stab)

(b) Scan vs Stab Performance

Fig. 9: Extended attribute query performance. In (a) we show the
time to search for an XAttr present in 25% of the files (Tree-1), 50%
of the files (Tree-2), and 100% of the files (Tree-3). Compared to
searching for XAttrs using XFS both with and without a recursive
tree walk to locate files the GUFI index improves performance by up
to 33x. In (b) we compare the performance of querying for an XAttr
that exists in each file with XAttrs (scan) and a unique XAttr that
exists in only a single file (stab) and find up to a 5.5x speedup for
highly selective stab queries.

XAttrs data for the files is randomly generated, a well-know

sentinel XAttr is always included as one of the XAttr name-

value pairs.

Figure 9a shows the average performance across 5 trials

performing a full file system search to find all files that have

an XAttr name and value matching the sentinel name-value

pair (i.e. query selectivity is 25% for Tree-1, 50% for Tree-2,

and 100% for Tree-3). For the XFS file system we measured

two query approaches: performing a find command paired

with a getfattr command per file and using a pre-generated

list of all files in the file system to only perform the getfattr

command. In both cases performance is proportional to the

total number of files rather than the number of files with XAttrs

because there is no POSIX system call to select files with

XAttrs. Using GUFI to query for files with an XAttr matching

the sentinel is significantly faster and results in performance

proportional to the number of files with XAttrs. GUFI achieves

a 33x speedup for Tree-1, a 22x speedup for Tree-2, and a

12x speedup for Tree-3 compared to the find+getfattr baseline

using XFS. Figure 9b compares the performance of using

GUFI to search for the sentinel XAttr and locating a unique

XAttr present in a single file. Locating and returning only a

single XAttr improves GUFI query performance an additional

2-5x dependent upon the number of files with attributes.

D. Macro-Benchmark Results

Finally, we report macro benchmark results that compare

GUFI with the current state-of-the-art metadata indexing en-

gine, Brindexer. In order to fairly evaluate the performance

of a file system index it is necessary to use realistic data

and realistic queries. This is because that the size of file and

directory names as well as the depths and sizes of directories

all directly effect the design and performance of a file system

index: an index that is only evaluated using compact file names

will not truthfully reflect the overheads associated with storing

the full path names of all indexed entries.

To compare the performance of GUFI and Brindexer we

use dataset 2, a real namespace collected from a production

scratch file system with 2.2 million directories and more than

64 million files. We configure Brindexer to use 256 threads and

256 databases organized such that each thread is responsible

for processing an entire database. The GUFI index has been

rollup processed with a limit of 250K entries as the largest

possible rollup table size and 224 threads. To evaluate the

performance of GUFI and Brindexer we use the following

queries:

1) List all file names accessible by the user.

2) Print the size and name of every directory accessible by

the user.

3) Print the space used by the users home directory (top-

level for root).

4) Print the space used by the users home directory (top-

level for root).

These queries are commonly executed using standard utilities

such as ls, find, and du for file systems supporting those tools.

The last two queries are duplicates however we use different

processes to execute the queries within GUFI. In the query 3

case we execute the command by accessing multiple databases

and summing the per-directory summary sizes. In query 4 we

rely on the tsummary table within GUFI’s schema to access

the size at the top-most level.

In Figure 10a we dropped caches and executed each of the

queries using the root user with 5 trials per query reporting

the average, minimum, and maximum times observed. This is

the fairest method to compare between the existing state of the

art because most available indexes cannot be directly used by

users. The GUFI index is faster for all queries with speedups

on average of 1.5x, 8.2x, 6.3x, and 230x respectively. The

final speedup is because GUFI needs to access only a single

entry within the tsummary table in order to determine the

size of the tree. The time required to build the tsummary

at the top-level directory was 14.8 seconds if done before the

rollup process and only 0.368 seconds if done with the 250K

rollup index.

In Figure 10b we execute the same queries in the same

fashion using 150 randomly selected user IDs reporting the

average time across all users as well as the fastest and slowest

user query times. This is approximately 10% of the total users

that own directories within the system and includes users

with both small and large amounts of data. To calculate the

Brindexer query times we augment the Brindexer query with

a UID in the SQL WHERE clause, but note that the amount

of data Brindexer accesses does not change because the query

must traverse the entire index. The queries executed on the

GUFI index use the substitute user command to first become

that user, and then the query is executed which means that

only user accessible data is traversed within the index. We

see that the Brindexer performance is virtually identical to

the admin queries. Although we observed a large outlier in

the Brindexer performance, we believe that this was due to an

internal SSD task as we were not able to reproduce that outlier

in multiple runs. Although the rollup process often results in

very few databases for a single user, the benefits of reducing

0

1

2

3

4

5

6

7

8

9

Q1 Q2 Q3 Q4

Q
u

e
ry

 T
im

e
 (

s
)

GUFI Brindexer

(a) Admin Query Times

0

1

2

3

4

5

6

7

8

9

Q1 Q2 Q3 Q4

Q
u

e
ry

 T
im

e
 (

s
)

GUFI Brindexer

(b) User Query Times

Fig. 10: Comparison of GUFI and Brindexer Query Performance.
GUFI provides average speedups of 1.5x - 230x for administrator
compared to the Brindexer index using a real file system namespace.
User-specific queries result in even greater speedups; however, only
GUFI can be accessed safely by users.

the search space outweigh the loss of concurrency and single

user query performance results in even further performance

benefits compared to Brindexer.

V. RELATED WORK

File system metadata performance has long been recognized

as an important focus within file system performance. Com-

mon local file systems use B-trees for storing and processing

metadata information [34–36]. TableFS [16] uses an LSM tree

to insert metadata into sorted and indexed logs to enhance

insertion performance. These metadata systems are developed

to address diverse file system workloads but are not designed

for metadata queries from a large number of clients. Scalable

distributed file system metadata planes including IndexFS [7],

DeltaFS [8] and InfiniFS [10] are focused on accelerating file

insertion, opens, and deletion rather than supporting scalable

metadata queries. Archival storage systems, such as HPSS [25]

and Haystack [37], leverage relational databases to create

their metadata store. These systems are designed to enable

privileged processes to efficiently locate single items from

within a store. GUFI is not a general purpose metadata plane

but is instead tuned to provide high levels of performance for

both small and large metadata queries.

External metadata indexes are a popular technique for

accelerating file system metadata performance. The Robinhood

Policy Engine [14] uses a relational database to store and

query metadata for the Lustre file system. Starfish [13] and

BorgFS [38] hash data across multiple databases and are

designed to support multiple file systems. HPE DMF7 [39]

maintains namespace reflection of file and directory metadata

in Cassandra [40] which can be queried using Spark [41,

42]. Spyglass [43] relies on subtree partitioning and snapshots

to distribute metadata across a collection of index databases.

Brindexer [15] provides better performance than these systems

by relying on hash-based data partitioning, a flattened schema,

and parallel query tools. These external metadata indexes en-

able rich metadata queries but require complex joins to check

permissions on parent directories and cannot be accessed by

users. GUFI provides best-in-class performance while also

supporting secure user queries.

Many alternative data systems exist for providing the ability

to tag data with additional metadata and provide a search

function across that metadata. Enhanced metadata systems

like Tagit [44], SoMeta [45], and EMPRESS [46] allow users

to define custom tags as indexes for locating data sets of

interest. Haystacks does not rely on tags and instead indexes

the textual contents of files [47] similar to technologies such

as ElasticSearch [48]. These indexes are all designed for open

user access and focus on searching within user or content

defined metadata while GUFI is focused on strictly enforcing

permissions as well.

VI. CONCLUSION

As data centers continue to improve support for complex

workflows and AI-based scientific inquiry, the ability to to

search for curated and labelled data sets across the entire

data set will increase in importance. GUFI is designed to

make searching for data sets within vast data center stores

faster, simpler, and more powerful than existing technologies.

The GUFI metadata index organizes file system metadata and

extended attributes so that all of the file systems within a

data center can be securely queried with the highest levels of

interactive metadata performance. When measured using real

file system namespace data collected from a large-scale data

center GUFI provides performance that is hundreds of times

faster than existing metadata indexes while using less space

and enabling direct access by data center users.

The GUFI file system metadata index relies on three primary

enhancements for improving the performance of metadata

queries. First, GUFI provides a permissions-aware database

partitioning scheme that enables users to only search through

data that is accessible by file system permissions. Second,

GUFI provides a directory rollup mechanism that limits the

space overhead associated with having a database per directory

while also enabling sufficient concurrency to saturate multiple

SSDs with metadata query workloads. Finally, GUFI provides

a rich schema that is designed to accelerate the types of queries

that are commonly performed by both users and administrators

for single and multiple file systems.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for

comments improving descriptions and clarity within this

manuscript. This manuscript has been approved for unlim-

ited release and has been assigned LA-UR-22-28903. The

paper has been authored by an employee or employees of

Triad National Security, LLC (Triad) under contract with the

U.S. Department of Energy (DOE). Accordingly, the U.S.

Government retains an irrevocable, nonexclusive, royalty-free

license to publish, translate, reproduce, use, or dispose of the

published form of the work and to authorize others to do the

same for U.S. Government purposes.

REFERENCES

[1] APEX workflows, https : / /www.nersc .gov /assets / apex- workflows-
v2.pdf, Mar. 2016.

https://www.nersc.gov/assets/apex-workflows-v2.pdf
https://www.nersc.gov/assets/apex-workflows-v2.pdf

[2] J. Lüttgau, S. Snyder, P. Carns, J. M. Wozniak, J. Kunkel, and T.
Ludwig, “Toward understanding i/o behavior in hpc workflows,” in
Proceedings of the 2018 International Workshop on Parallel Data

Storage & Data Intensive Scalable Computing Systems (PDSW-DISCS

18), 2018, pp. 64–75. DOI: 10.1109/PDSW-DISCS.2018.00012.
[3] R. B. Ross, G. Amvrosiadis, P. Carns, C. D. Cranor, M. Dorier, K.

Harms, G. Ganger, G. Gibson, S. K. Gutierrez, R. Latham, B. Robey,
D. Robinson, B. Settlemyer, G. Shipman, S. Snyder, J. Soumagne,
and Q. Zheng, Mochi: Composing data services for high-performance

computing environments, 2020. DOI: 10.1007/s11390-020-9802-0.
[4] G. K. Lockwood, S. Snyder, S. Byna, P. Carns, and N. J. Wright,

“Understanding data motion in the modern hpc data center,” in Pro-

ceedings of the 2019 International Parallel Data Systems Workshop

(PDSW 19), 2019, pp. 74–83. DOI: 10.1109/PDSW49588.2019.00012.
[5] S.-H. Lim, H. Sim, R. Gunasekaran, and S. S. Vazhkudai, “Scientific

user behavior and data-sharing trends in a petascale file system,” in
Proceedings of the 2017 International Conference for High Perfor-

mance Computing, Networking, Storage, and Analysis (SC 17), 2017.
DOI: 10.1145/3126908.3126924.

[6] F. Wang, H. Sim, C. Harr, and S. Oral, “Diving into petascale
production file systems through large scale profiling and analysis,”
in Proceedings of the 2nd Joint International Workshop on Parallel

Data Storage & Data Intensive Scalable Computing Systems (PDSW-

DISCS 17), 2017, 37–42. DOI: 10.1145/3149393.3149399.
[7] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling

file system metadata performance with stateless caching and bulk
insertion,” in Proceedings of the 2014 International Conference for

High Performance Computing, Networking, Storage, and Analysis (SC

14), 2014, pp. 237–248. DOI: 10.1109/SC.2014.25.
[8] Q. Zheng, C. D. Cranor, G. R. Ganger, G. A. Gibson, G. Amvrosiadis,

B. W. Settlemyer, and G. A. Grider, “Deltafs: A scalable no-ground-
truth filesystem for massively-parallel computing,” in Proceedings of

the 2021 International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC 21), 2021. DOI: 10 . 1145 /
3458817.3476148.

[9] Y. Wang, C. Li, X. Shao, Y. Chen, F. Yan, and Y. Xu, “Lunule:
An agile and judicious metadata load balancer for cephfs,” in Pro-

ceedings of the 2021 International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC 21), 2021. DOI:
10.1145/3458817.3476196.

[10] W. Lv, Y. Lu, Y. Zhang, P. Duan, and J. Shu, “InfiniFS: An efficient
metadata service for Large-Scale distributed filesystems,” in 20th

USENIX Conference on File and Storage Technologies (FAST 22),
Santa Clara, CA: USENIX Association, Feb. 2022, pp. 313–328.
[Online]. Available: https : / / www. usenix . org / conference / fast22 /
presentation/lv.

[11] P. J. Braam and P. Schwan, “Lustre: The intergalactic file system,” in
Ottawa Linux Symposium, vol. 8, 2002, pp. 3429–3441.

[12] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system
for large computing clusters,” in Proceedings of the 1st USENIX

Conference on File and Storage Technologies (FAST 02), 2002,
pp. 231–244.

[13] J. Farmer, “Starfish: A side-band database for hpc and archival storage
systems,” Santa Clara, CA, 2017. [Online]. Available: https://www.
storageconference.us/2017/Presentations/Farmer.pdf.

[14] T. Leibovici, “Taking back control of HPC file systems with robin-
hood policy engine,” CoRR, vol. abs/1505.01448, 2015. arXiv: 1505.
01448. [Online]. Available: http://arxiv.org/abs/1505.01448.

[15] A. K. Paul, B. Wang, N. Rutman, C. Spitz, and A. R. Butt, “Efficient
metadata indexing for hpc storage systems,” in Proceedings of the

2020 IEEE/ACM International Symposium on Cluster, Cloud, and

Internet Computing (CCGRID 20), 2020, pp. 162–171. DOI: 10.1109/
CCGrid49817.2020.00-77.

[16] K. Ren and G. Gibson, “TABLEFS: Enhancing metadata efficiency
in the local file system,” in Proceedings of the 2013 USENIX Annual

Technical Conference (USENIX ATC 13), 2013, pp. 145–156.
[17] NERSC. “Storage trends and summaries.” (2021), [Online]. Available:

https: / /www.nersc .gov/users / job- logs- statistics /storage- and- file-
systems/storage-statistics/storage-trends/.

[18] NASA. “Data storage systems.” (2021), [Online]. Available: https :
//www.nas.nasa.gov/hecc/resources/storage_systems.html.

[19] A.-J. Peters. “Eos - the cern disk storage system driving cernbox.”
(2017), [Online]. Available: https : / / indico . cern . ch / event / 565381 /
contributions/2401957/attachments/1404011/2144404/CS3-EOS.pdf.

[20] NetApp. “Dragons, devops,multi-cloud: Netapp insight.” (2018), [On-
line]. Available: https://e3zine.com/devops-multi-cloud-netapp/.

[21] W. Zhang, S. Byna, H. Sim, S. Lee, S. Vazhkudai, and Y. Chen,
“Exploiting user activeness for data retention in hpc systems,” in
Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, ser. SC ’21, St. Louis,
Missouri: Association for Computing Machinery, 2021. DOI: 10.1145/
3458817 . 3476201. [Online]. Available: https : / / doi . org / 10 . 1145 /
3458817.3476201.

[22] M. Beigi, M. Devarakonda, R. Jain, M. Kaplan, D. Pease, J. Rubas,
U. Sharma, and A. Verma, “Policy-based information lifecycle man-
agement in a large-scale file system,” in Sixth IEEE International

Workshop on Policies for Distributed Systems and Networks (POL-

ICY’05), 2005, pp. 139–148. DOI: 10.1109/POLICY.2005.26.
[23] D. A. Dillow, Lester, the lustre lister, version 00, Dec. 2013. [Online].

Available: https://www.osti.gov//servlets/purl/1231806.
[24] M. Bruning, “Zfs on-disk data walk (or: Where’s my data),” Prague,

2008. [Online]. Available: http : / / www. osdevcon . org / 2008 / files /
osdevcon2008-max.pdf.

[25] D. I. Boomer, “Relational database active tablespace archives using
hsm technology,” in 23rd IEEE / 14th NASA Goddard Conference on

Mass Storage Systems and Technologies (MSST 2006), Information

Retrieval from Very Large Storage Systems, CD-ROM, 15-18 May

2006, College Park, MD, USA, 2006.
[26] J. LaFon, S. Misra, and J. Bringhurst, “On distributed file tree walk

of parallel file systems,” in Proceedings of the 2012 International

Conference on High Performance Computing, Networking, Storage,

and Analysis (SC 12), 2012.
[27] Libcircle, https://github.com/hpc/libcircle.
[28] X. M. Zhang et al., “Designing a sql query rewriter to enforce

database row level security,” Ph.D. dissertation, Massachusetts Insti-
tute of Technology, 2016.

[29] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed,
H. Lan, Y. Yang, J. Zhai, W. Liu, and W. Xue, “End-to-end I/O
monitoring on a leading supercomputer,” in 16th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 19), Boston,
MA: USENIX Association, Feb. 2019, pp. 379–394. [Online]. Avail-
able: https://www.usenix.org/conference/nsdi19/presentation/yang.

[30] Sqlite, https://www.sqlite.org/index.html.
[31] D. Hitz, J. Lau, and M. Malcolm, “File system design for an nfs

file server appliance,” in Proceedings of the USENIX Winter 1994

Technical Conference on USENIX Winter 1994 Technical Conference,
ser. WTEC’94, San Francisco, California: USENIX Association,
1994, p. 19.

[32] J. Bonwick, M. Ahrens, V. Henson, M. J. Maybee, and M. Shellen-
baum, “The zettabyte file system,” 2003.

[33] D. A. Dillow, Lester, the lustre lister, version 00, Dec. 2013. [Online].
Available: https://www.osti.gov//servlets/purl/1231806.

[34] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck, “Scalability in the xfs file system,” in Proceedings of the

1996 USENIX Annual Technical Conference (USENIX ATC 96), 1996,
p. 1.

[35] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L.
Vivier, “The new ext4 filesystem: Current status and future plans,” in
Proceedings of the Linux symposium, Citeseer, vol. 2, 2007, pp. 21–
33.

[36] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesys-
tem,” ACM Trans. Storage, vol. 9, no. 3, Aug. 2013. DOI: 10.1145/
2501620 . 2501623. [Online]. Available: https : / / doi . org / 10 . 1145 /
2501620.2501623.

[37] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding
a needle in haystack: Facebook’s photo storage,” in Proceedings

of the 9th USENIX Conference on Operating Systems Design and

Implementation, ser. OSDI’10, Vancouver, BC, Canada: USENIX
Association, 2010, 47–60.

[38] S. Morgan and M. Mortazavi. “Borgfs file system metadata index
search.” (2014), [Online]. Available: https : / / www . snia . org /
educational-library/borgfs-file-system-metadata-index-search-2014.

[39] HPE. “Hpe data management framework.” (2021), [Online]. Avail-
able: https://support.hpe.com/hpesc/public/docDisplay?docId=emr_
na-a00025296en_us.

[40] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010. DOI: 10.1145/1773912.1773922.

https://doi.org/10.1109/PDSW-DISCS.2018.00012
https://doi.org/10.1007/s11390-020-9802-0
https://doi.org/10.1109/PDSW49588.2019.00012
https://doi.org/10.1145/3126908.3126924
https://doi.org/10.1145/3149393.3149399
https://doi.org/10.1109/SC.2014.25
https://doi.org/10.1145/3458817.3476148
https://doi.org/10.1145/3458817.3476148
https://doi.org/10.1145/3458817.3476196
https://www.usenix.org/conference/fast22/presentation/lv
https://www.usenix.org/conference/fast22/presentation/lv
https://www.storageconference.us/2017/Presentations/Farmer.pdf
https://www.storageconference.us/2017/Presentations/Farmer.pdf
https://arxiv.org/abs/1505.01448
https://arxiv.org/abs/1505.01448
http://arxiv.org/abs/1505.01448
https://doi.org/10.1109/CCGrid49817.2020.00-77
https://doi.org/10.1109/CCGrid49817.2020.00-77
https://www.nersc.gov/users/job-logs-statistics/storage-and-file-systems/storage-statistics/storage-trends/
https://www.nersc.gov/users/job-logs-statistics/storage-and-file-systems/storage-statistics/storage-trends/
https://www.nas.nasa.gov/hecc/resources/storage_systems.html
https://www.nas.nasa.gov/hecc/resources/storage_systems.html
https://indico.cern.ch/event/565381/contributions/2401957/attachments/1404011/2144404/CS3-EOS.pdf
https://indico.cern.ch/event/565381/contributions/2401957/attachments/1404011/2144404/CS3-EOS.pdf
https://e3zine.com/devops-multi-cloud-netapp/
https://doi.org/10.1145/3458817.3476201
https://doi.org/10.1145/3458817.3476201
https://doi.org/10.1145/3458817.3476201
https://doi.org/10.1145/3458817.3476201
https://doi.org/10.1109/POLICY.2005.26
https://www.osti.gov//servlets/purl/1231806
http://www.osdevcon.org/2008/files/osdevcon2008-max.pdf
http://www.osdevcon.org/2008/files/osdevcon2008-max.pdf
https://github.com/hpc/libcircle
https://www.usenix.org/conference/nsdi19/presentation/yang
https://www.sqlite.org/index.html
https://www.osti.gov//servlets/purl/1231806
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623
https://www.snia.org/educational-library/borgfs-file-system-metadata-index-search-2014
https://www.snia.org/educational-library/borgfs-file-system-metadata-index-search-2014
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-a00025296en_us
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-a00025296en_us
https://doi.org/10.1145/1773912.1773922

[41] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J.
Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, 56–65, Oct.
2016. DOI: 10.1145/2934664.

[42] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing,” in Proceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation (NSDI 12), 2012, p. 2.
[43] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller,

“Spyglass: Fast, scalable metadata search for large-scale storage
systems,” in Proccedings of the 7th Conference on File and Storage

Technologies (FAST 09), 2009, 153–166.
[44] H. Sim, Y. Kim, S. S. Vazhkudai, G. R. Vallée, S.-H. Lim, and

A. R. Butt, “Tagit: An integrated indexing and search service for
file systems,” in Proceedings of the 2017 International Conference

for High Performance Computing, Networking, Storage, and Analysis

(SC 17), 2017. DOI: 10.1145/3126908.3126929.
[45] H. Tang, S. Byna, B. Dong, J. Liu, and Q. Koziol, “Someta: Scalable

object-centric metadata management for high performance comput-
ing,” in Proceedings of the 2017 IEEE International Conference on

Cluster Computing (CLUSTER 17), 2017, pp. 359–369. DOI: 10.1109/
CLUSTER.2017.53.

[46] M. Lawson, C. Ulmer, S. Mukherjee, G. Templet, J. Lofstead, S. Levy,
P. Widener, and T. Kordenbrock, “Empress: Extensible metadata
provider for extreme-scale scientific simulations,” in Proceedings of

the 2Nd Joint International Workshop on Parallel Data Storage &

Data Intensive Scalable Computing Systems (PDSW-DISCS 17), 2017,
pp. 19–24. DOI: 10.1145/3149393.3149403.

[47] A. B. Keleher, K. Chard, I. Foster, I. Raicu, and A. Orhean, “Finding a
needle in a field of haystacks: Metadata search for distributed research
repositories,” 2017.

[48] C. Gormley and Z. Tong, Elasticsearch: the definitive guide: a

distributed real-time search and analytics engine. " O’Reilly Media,
Inc.", 2015.

https://doi.org/10.1145/2934664
https://doi.org/10.1145/3126908.3126929
https://doi.org/10.1109/CLUSTER.2017.53
https://doi.org/10.1109/CLUSTER.2017.53
https://doi.org/10.1145/3149393.3149403

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran all of our experience on a CentOS 7 node running the Linux
5.7.9 Kernel. It has two Intel Xeon Platinum CPUs, 192 GB RAM,
and 4 SSDs.

The software used were:
1. The fio benchmarking utility 2. blktrace 3. GUFI
Figure 7
Run fio on the target drives to get the available bandwidth. Create

a tree on each of the different SSD configurations. Run gufi_query -E
"SELECT uid FROM entries" <index>while running blktrace. Divide
the block count by the query time to get the GUFI performance.

Figure 8
For each Rollup Limit, generate a new copy of the index from

the same trace/tree and roll it up to the limit.
Run gufi_query -S "SELECT uid FROM summary" -E "SELECT

uid FROM pentries" <index> to measure query performance of
rolled up indicies.

Run du to get the sizes taken up by each index.
Figure 9
Replicate a fixed tree into 3 XFS directories. Set an xattr with

a fixed name for 25%, 50%, and 100% of the non-directories in the
indices, such as user.ext. For the same single file/link in each index,
set the xattr to a fixed name such as "user.needle".

To benchmark XFS xattr performance, run find
${tree}
(-type l -o -type f
) | xargs -d ’
n’ -P 224 getfattr -h -n ’user.ext’

The tree used to obtain GUFI xattr performance was manually
modified as xattr indexing was not completed at the time of writ-
ing. The 25%, 50%, and 100% xattr coverages were all placed into
the same index under different table names, requiring only table
name changes, which did not affect the overall performance of the
experiments.

To obtain our scan results, we ran gufi_query -M ’rhentxattr,xrh%
-E ’SELECT path(""), name, uid, gid, exattrs FROM pentries INNER
JOIN myxatv ON inode=exinode" <index>

To obtain our stab results, we ran gufi_query -M ’rhentxattr,xrh%
-E ’SELECT path(""), name, uid, gid, exattrs FROM pentries INNER
JOIN myxatv ON inode=exinode WHERE exattrs LIKE "%needle%"
<index>

Figure 10
We ran gufi_query with 4 different queries on a fixed tree as

different users (sudo -u
<uid>).

1. gufi_query -E "SELECT name FROM pentries" <index> 2.
gufi_query -S "SELECT name, size FROM summary" <index> 3.
gufi_query -a -e 0 -I "CREATE TABLE sizes(total_size INT64)" -S
"INSERT INTO sizes SELECT TOTAL(size) FROM summary" -E
"INSERT INTO sizes SELECT TOTAL(size) FROM pentries" -J "IN-
SERT INTO aggregate.sizes SELECT TOTAL(total_size) from sizes"

-G "SELECT TOTAL(total_size) from sizes" <index> 4. After creat-
ing the tree summaries for each user with bfti, run gufi_query -T
"SELECT size FROM tsummary" <index>

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://doi.org/10.5281/zenodo.6459552
Artifact name: GUFI Github Repository
Citation of artifact: Jason Lee, Dominic Manno, Brad Settlemyer, &

Gary Grider. (2022). mar-file-system/GUFI: XATTR (0.5.2-rc2).
Zenodo. https://doi.org/10.5281/zenodo.6459552

Artifact 2
Persistent ID: https://doi.org/10.5281/zenodo.6600686
Artifact name: GUFI Filesystem Traces
Citation of artifact: Dominic Manno, Jason Lee, Brad Settlemyer,

Qing Zheng, & Gary Grider. (2022). mar-file-system/GUFI-
Filesystem-Traces: GUFI Filesystem Traces (v1.0.0) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.6600687

Reproduction of the artifact with container: There is a CentOS 7
Docker image available at contrib/centos7-gufi.tar.gz in the code
repository. GIT LFS is required to download it. The commands used
to set up the environment and build GUFI are as follows:

on the host sudo docker run -it centos:7 bash
within the container # probably do not need sudo because you

will be dropped into the container as root yum install -y automake
epel-release gcc-c++ git make patch pcre-devel wget yum install -y
cmake3

git clone -b sc22 https://github.com/mar-file-system/GUFI.git
cd GUFI git checkout f36e7f856f99a32591d8d183a0d2c63059a28dd6
mkdir build cd build cmake3 .. make make install

——————————-
Publicly available traces of large trees can be down-

loaded from https://doi.org/10.5281/zenodo.6600686,
which mirrors https://github.com/mar-file-system/GUFI-
Filesystem-Traces. The repository contains ftp://hpc-
ftp.lanl.gov/data/storage/GUFI/GUFITraces.tar.bz2 broken
into pieces for easy upload/download with git lfs.

——————————-
To index a filesystem directory, run gufi_dir2index To convert

a trace to an index, run gufi_trace2index To query an index, run
gufi_query Argument examples: -S "SELECT * FROM summary" -E
"SELECT * FROM pentries"

To roll up an index, run rollup on the index - the index will be
modified. To roll up to a limit, run rollup with the -L <limit> flag.
Querying a rolled up index requires no changes.

Use "-n <thread count>" with any of the GUFI executables to set
the number of worker threads.

	Introduction
	Motivation
	GUFI Design and Implementation
	GUFI Architecture Overview
	Secure Indexes for System-defined Metadata
	Secure Indexes for User-defined Metadata
	Index Creation Tools
	Online Index Updates
	Index Access Controls

	Index Schema
	Extended Attribute Schema

	Parallel Index Algorithms
	Source File System Scans
	Parallel Index Queries
	Permissions-based Sharding

	Evaluation
	Underlying Disk Utilization
	Permissions-based Database Rollups
	Extended Attribute Query Performance
	Macro-Benchmark Results

	Related work
	Conclusion

