
111/1/23Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

KV-CSD: A Hardware-Accelerated Key-Value Store for 
Data-Intensive Applications

Inhyuk Park∗, Qing Zheng†, Dominic Manno†, Soonyeal Yang∗, Jason Lee†, David Bonnie†, 
Bradley Settlemyer‡, Youngjae Kim§, Woosuk Chung∗, Gary Grider†

11/1/2023

LA-UR-23-32086

∗SK hynix, †Los Alamos National Laboratory, ‡NVIDIA, §Sogang University



211/1/23

Goal

• Rapid insight generation

Problem

• Scientific analysis often slowed down by 
unordered, unindexed data access

Approach

• Leverage computational storage to sort 
and index data at rest

KV-CSD

Hardware-accelerated KV 
storage for efficient data insertion 

and queries

Overview



311/1/23

A Quick Look

Two components: 1) An arm SoC 
board, and 2) A ZNS SSD

The arm board implements KV atop 
SSD zones

Apps use custom NVMe KV 
commands for bulk data insertion, 
index creation, and queries

App

Arm SoC board

ZNS SSD

KV

KV-CSD compute

Storage



411/1/23

KV-CSD in Real World

Current Prototype

ZNS SSD

ARM SoC
(FPGA in future) PCIe

(NVMeOF in future)

ZNS SSD

ARM SoC 



511/1/23

Today’s Talk

1. Why computational 
storage?

3. Results highlights2. How does it work?



611/1/23

Recap: How Scientific Simulations Run

Time based bulk-synchronous 
parallel programs

Iterate between compute & 
I/O phases

Analytics occur after 
simulation

Compute IO Compute IO Compute IO Analytics

Simulation Pipeline

…Time

Timestep 0-15

Timestep 16-31

Timestep 32-47

Persist timestep 15 to storage



711/1/23

How Data is Stored Today

Through filesystems

Data stored as one big or many 
small files per timestep

Data typically accompanied by 
metadata that describes the data 
(type, dimension, …)

Compute IO Compute IO Compute IO Analytics

Simulation Pipeline

…Time

Files Files Files



811/1/23

Why Analysis Can Be Slow?

Data may not be persisted in the same 
order as queries, leading to full data 
scans

Pre-sorting data prior to queries using 
many compute nodes can be equally 
inefficient

Computational storage offers new 
ways of acceleration

Image from LANL VPIC simulation done by L. Yin, et al at SC10

For example: a simulation may store its particles in particle 
ID order, but queries may target their energy levels



911/1/23

Toward Ordered, Computational KV Storage

App converts data to KV pairs and 
bulk inserts them into storage

One KV space per app process 
per timestep

Storage sorts data by key 
asynchronously and builds 
secondary indexes per app query 
needs

Compute IO Compute IO Compute IO Analytics

Simulation Pipeline

…
Time

KV space KV space KV space

Bulk KV Bulk KV Bulk KV Point or 
range 
queries

Queries sped up by storage-built primary and 
secondary indexes



1011/1/23

Why KV?

Scientific data often resembles records with keys and values

KV provides GET / SCAN primitives unavailable from filesystems

KV interface already very popular

KV provides sufficient knowledge of data without having to resort to external 
metadata (e.g.: no need for filename to storage LBA translation)



1111/1/23

Why Hardware Acceleration?

Software KV stores (such as RocksDB) 
rely on background processing to hide 
data sorting latency

Insertion is suspended when 
background jobs cannot keep up

Hardware acceleration allows for more 
aggressive latency hiding

By deferring background 
work until after insertion 
concludes and by 
performing it within a 
computational storage 
device



1211/1/23

A Closer Look at the Device

Zones

Keyspace
Manager

Zone
Manager

Keyspace Keyspace

KV
-C

SD
 S

oC
ZN

S 
SS

D

Application

Zone Cluster Zone Cluster Zone Cluster Zone Cluster Zone Cluster

Each cell represents a zone



1311/1/23

Keyspace API

Host
Application
KV Client

KV-CSD
Arm SoC Board

ZNS SSD

Keyspace State
New

Keyspace Info

Writable Indexing Indexed

KV insertion

Query

Keyspace Deletion



1411/1/23

Primary and Secondary Indexes

Particle ID Energy Location X Location Y Location Z …
0 0.3
1 0.6
2 0.7
3 0.1
4 0.2
5 0.4
6 0.5
7 0.2

ValueKey

Primary
Index

User-Definable Secondary 
Indexes

Secondary indexes 
are defined by users 
specifying the byte 
range and the type of 
a portion of value to 
serve as the 
secondary index 
keys



1511/1/23

Result Highlights: More Details in Paper

Both KV-CSD and RocksDB allow efficient reads, but KV-CSD does so without 
potentially significantly slowing down writes

Filesystem
(Base approach)

RocksDB
(State-of-the-art)

KV-CSD
(This paper)

Simulation I/O Path Fast Slow Fast

Analytics Path Slow Fast Fast



1611/1/23

Conclusion

Efficient data retrieval matters

Hardware KV stores enable analytics-friendly primitives while better hiding 
background work latency (than software solutions), leading to better time-to-insights

KV-CSD is tailored for scientific simulation pipelines, at the cost of being more 
restrictive than regular KV stores (see more discussion in paper)

Computational storage more practical now than it was 30 years ago (though more 
R&D is needed for production deployment)




