
1 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Virtual Conference
September 28-29, 2021

KV-CSD
An Ordered, HW-Accelerated KV Store For 

Rapid Data Insertion and Queries

Qing Zheng, Scientist, Los Alamos National Laboratory (LANL)

LA-UR-23-30273



2 | ©2023 Triad National Security, LLC. All Rights Reserved.

A Collaboration with SK hynix



3 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Problem
Scientific data 
analytics often slowed 
down by unordered, 
unindexed data access

KV-CSD
An ordered, hardware-
accelerated KV store 
for rapid data insertion 
and queries

Goal
Leverage 
computational storage 
to sort and index data 
at rest

Overview



4 | ©2023 Triad National Security, LLC. All Rights Reserved. 

A Quick Look

The arm board implements 
KV atop SSD zones

Apps use custom NVMe 
KV commands for bulk data 
insertion, index creation, 
and queries

App

Arm SoC borad

ZNS SSD

Two components: (1) an arm 
SoC board, (2) a ZNS SSD

KV



5 | ©2023 Triad National Security, LLC. All Rights Reserved. 

KV-CSD in Real World

Current Prototype

ZNS SSD

ARM SoC
(FPGA in future) PCIe

(NVMeOF in future)

ZNS SSD

ARM SoC 



6 | ©2023 Triad National Security, LLC. All Rights Reserved. 

§Why ordered computational KV 
storage?

§How does it work?

Today’s Talk



7 | ©2023 Triad National Security, LLC. All Rights Reserved. 

How Scientific Simulations Run

Time based bulk-
synchronous parallel 
programs

Iterate between compute & 
I/O phases

Analytics occur after 
simulation

Compute IO Compute IO Compute IO Analytics

Simulation Pipeline

…
Time

Timestep 0-15

Timestep 16-31

Timestep 32-47

Persist timestep 15 to storage



8 | ©2023 Triad National Security, LLC. All Rights Reserved. 

How Data is Stored Today

Through filesystems

Data stored as one big or many 
small files per timestep

Data typically accompanied by 
metadata that describes the data 
(type, dimension, …)

Compute IO Compute IO Compute IO Analytics

Simulation Pipeline

…
Time

Files Files Files



9 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Problem: Queries Often Read More Data Than Necessary

Data may not be persisted in the 
same order as queries, leading 
to full data scans

Pre-sorting data prior to queries 
using many compute nodes can 
be equally inefficient

Computational storage offers 
new ways of acceleration

Image from LANL VPIC simulation done by L. Yin, et al at SC10

For example: a simulation may store its particles in particle ID 
order, but queries may target their energy levels



10 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Toward Ordered, Computational KV Storage

App converts data to KV pairs and 
bulk inserts them into storage

One KV namespace per app 
process per timestep

Storage sorts data by key 
asynchronously and builds 
secondary indexes per app query 
needs

Compute IO Compute IO Compute IO Analytics

Simulation Pipeline

…

Time

Keyspace Keyspace Keyspace

Bulk KV Bulk KV Bulk KV
Point or 
range 
queries

Queries sped up by storage-built primary and 
secondary indexes



11 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Why KV?

§Scientific data often resembles 
records with keys and values

§KV interface already very popular 
thanks to open software like 
RocksDB

§KV provides sufficient knowledge of 
data without having to resort to 
external metadata

Switching from files to KV not 
awfully difficult

No need to map filenames to 
LBAs to enable offload



12 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Why Hardware Acceleration?

§Software KV stores (such as 
RocksDB) rely on background 
processing to hide data sorting latency

§ Insertion is suspended when 
background jobs cannot keep up

§Hardware acceleration allows for more 
aggressive latency hiding

By deferring 
background work until 
after insertion 
concludes and by 
performing it within a 
computational storage 
device



13 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Why Hardware Acceleration?

A reduction of software layers also enables higher performance

Host

SSD

Application

Device Driver

Block Layer

Filesystem

KV Store
(e.g.: RocksDB)

Host

Application
KV Client

KV-CSD SoC
Borad

ZNS SSD



14 | ©2023 Triad National Security, LLC. All Rights Reserved. 

§Why ordered computational KV 
storage?

§How does it work?

Today’s Talk



15 | ©2023 Triad National Security, LLC. All Rights Reserved. 

A Closer Look at the Device

Zones

Keyspace
Manager

Zone
Manager

Keyspace Keyspace

KV
-C

SD
 S

oC
ZN

S 
SS

D

Application

Zone Cluster Zone Cluster Zone Cluster Zone Cluster Zone Cluster



16 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Keyspace API

Host

Application
KV Client

KV-CSD
Arm SoC Board

ZNS SSD

Keyspace State

New

Keyspace Info

Writable Indexing Indexed

KV insertion

Query

Keyspace Deletion



17 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Primary and Secondary Indexes

Particle ID Energy Location X Location Y Location Z …
0 0.3
1 0.6
2 0.7
3 0.1
4 0.2
5 0.4
6 0.5
7 0.2

ValueKey

Primary
Index

User-Definable Secondary 
Indexes

Secondary indexes 
are defined by users 
specifying the byte 
range and the type 
of a portion of 
value to serve as the 
secondary index 
keys



18 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Two scenarios

§ Data insertion

§ Range query against a secondary 
index

A 256-million particle dataset stored 
as KV pairs

§ Key: particle ID (16B)

§ Value: particle payload (32B)

Analytics: range query over particle 
energy with varying selectivity

Evaluation Against RocksDB



19 | ©2023 Triad National Security, LLC. All Rights Reserved. 

RocksDB vs KV-CSD Runs

Host

App Process
Lightweight KV Client

KV-CSD
Arm SoC Board
(KV à Zones)

ZNS SSD

Full KV 
management 
(foreground & 

background jobs)

Host

App Process

RocksDB
(KV à Files)

SSD

Operating System

NVMe KV 
command 

generation only

RocksDB KV-CSD



20 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Results: Data Insertion

320

66

384

601

0

200

400

600

800

1000

RocksDB KV-CSD

R
un

tim
e 

(s
)

Insertion Additional Background Work

KV-CSD more effectively hides background work latency

Lower is better

User experiences both 
latencies User 

experiences 
only insertion 

latency



21 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Results: Range Query Against a Secondary Index

3 5 8 12
19

33

55

96

0.4 0.8 1.9 3.7 7.4
18

37

74

0
20
40
60
80

100
120

0.1% 0.2% 0.5% 1% 2% 5% 10% 20%

Q
ue

ry
 L

at
en

cy
 (s

)

Query Selectivity

RocksDB KV-CSD

KV-CSD allows for more rapidly answering user queries 
thanks to hardware specialization

Lower is better

KV-CSD 7.4x
faster



22 | ©2023 Triad National Security, LLC. All Rights Reserved.

More on KV-CSD

KV-CSD: A Hardware-Accelerated Key-Value Store
for Data-Intensive Applications

Inhyuk Park∗, Qing Zheng†, Dominic Manno†, Soonyeal Yang∗, Jason Lee†, David Bonnie†,
Bradley Settlemyer‡, Youngjae Kim§, Woosuk Chung∗, Gary Grider†
∗SK hynix, †Los Alamos National Laboratory, ‡NVIDIA, §Sogang University

{inhyuk.park, soonyeal.yang, woosuk.chung}@sk.com, {bsettlemyer}@nvidia.com, {youkim}@sogang.ac.kr,

{qzheng, dmanno, jasonlee, dbonnie, ggrider}@lanl.gov

Abstract—Popular software key-value stores such as LevelDB
and RocksDB are often tailored for efficient writing. Yet, they
tend to also perform well on read operations. This is because
while data is initially stored in a format that favors writes, it is
later transformed by the DB in the background into a format that
better accommodates reads. Write-optimized key-value stores can
still block writes. This happens when those background workers
cannot keep up with the foreground insertion workload.

This paper advocates for a hardware-accelerated key-value
store, enabling performance-critical operations, like background
data reorganization and queries, to execute directly on storage
instead of a host as existing key-value stores do. This better hides
background work latency, prevents it from blocking foreground
writes, and improves overall I/O efficiency. Our prototype, called
KV-CSD, is a key-value based computational storage device
consisting of an NVMe SSD and a System-on-a-Chip (SoC) that
implements an ordered key-value store atop the SSD. Through
offloaded processing, KV-CSD streamlines data insertion, reduces
host-device data movement for both background data reorgani-
zation and query processing, and shows up to 10.6× lower write
times and up to 7.4× faster queries compared to the current state-
of-the-art software key-value stores on a real scientific dataset.

I. INTRODUCTION

Demands for storage performance continue to grow due
to rapidly increasing client performance, data size, and data-
intensive applications such as simulation checkpointing, ma-
chine learning training, and large-scale data analytics [1–3].
To keep up with these demands, many recently deployed HPC
systems — from Los Alamos’ Trinity [4] supercomputer in
2016 to Oak Ridge’s Frontier [5] and NERSC’s Perlmutter [6]
supercomputers in 2022 — have employed flash-based storage
tiers to provide performance that matches the performance of
their compute tiers. In these flash-accelerated systems, storage
remains as block devices and applications continue to access
storage using filesystems [7–10]. Sustained high bandwidth
enabled by flash allows applications to quickly transfer a large
amount of data between compute and storage nodes, which
benefits applications such as simulation checkpointing [11,
12] that read and write datasets in their entirety (as opposed
to selective reads) and do not require data to be converted
to a different format for efficient retrieval at a later point in
time [13]. Nevertheless, applications that do require a format
conversion — either in the form of resorting data or building
auxiliary indexes alongside it — tend to still experience long
processing delays. This is especially the case when high

KV-CSDHost

App

Client Library

SoC

Ordered KV 
Store

PCIe NVMe SSD

KV 
API

Fig. 1: Overview of a KV-CSD Computational Storage Device

volumes of small scientific data records previously written by a
massively parallel scientific simulation are subsequently read
for interactive data analytics with potentially very selective
queries [14–16]. A scientist must either patiently wait for data
to be converted into the right format or risk executing a query
that reads back an excessive amount of data, leading to a very
long run time.

To speed up applications with potentially highly selective
data access patterns, embedded key-value stores such as Lev-
elDB [17] and RocksDB [18, 19] have been increasingly
explored in scenarios ranging from filesystem metadata man-
agement [20–23], block data management [24, 25], to large-
scale data analytics [26–28]. By employing Log-Structured
Merge (LSM)-Tree based data structures [29], these key-value
stores achieve high data insertion speeds and rapid point
and range query performance over primary keys. They do so
by first writing data into logs and then sorting them in the
background using a process known as compaction. Recently,
we have also seen techniques that leverage LSM-based key-
value stores for secondary indexes, allowing for efficiently
answering queries with predicates that can span multiple data
dimensions [30–33].

Unfortunately, even though LSM-based key-value stores
have been increasingly deployed and can effectively transform
data to read-optimized formats for rapid queries, they are still
limited in their capacity to process data efficiently. First, an
embedded key-value store runs inside an application process
and depends solely on the host’s compute resources to carry
out all operations. This reliance constrains the store’s ability to
hide background work latency through asynchronous process-
ing. As a result, in cases where the background compaction
process of the key-value store becomes a bottleneck and fails
to keep up with a foreground insertion application, the store
may be unable to hide it — the insertion application can
still experience long I/O delays and even be unable to make
forward progress [34]. At the same time, with filesystems

2. KV-CSD demo at Flash Memory Summit 2023

1. KV-CSD paper at IEEE Cluster Computing Conference 2023

WINNER

3. R&D 100 Award

1 2
3



23 | ©2023 Triad National Security, LLC. All Rights Reserved. 

A More Complete Picture …

Tue Sep 19 | 4:05pm - 4:55pm

Salon V



24 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Conclusion

Efficient data retrieval performance is key to scientific analytics

Computational storage opens new ways of acceleration 
infeasible with traditional methods

Preliminary results are very encouraging

More work/collaboration/innovation is needed for production 
deployment



25 | ©2023 Triad National Security, LLC. All Rights Reserved. 

Acknowledgement
Jason Lee (jasonlee@lanl.gov)

David Bonnie (dbonnie@lanl.gov)

Dominic Manno (dmanno@lanl.gov)

Gary Grider (ggrider@lanl.gov)

Bradley Settlemyer 
(bsettlemyer@nvidia.com)

Youngjae Kim (youkim@sogang.ac.kr)

Inhyuk Park (inhyuk.park@sk.com)

Soonyeal Yang (soonyeal.yang@sk.com)

Jungki Noh (jungki.noh@sk.com)

Woosuk Chung (woosuk.chung
@sk.com)

Hoshik Kim (hoshik.kim@sk.com)

Pui York Wong (puiyork.wong@us.skhynix.com)

Jongryool Kim (jongryool.kim@us.skhynix.com)

Jin Lim (jin.lim@us.skhynix.com)



26 | ©2023 Triad National Security, LLC. All Rights Reserved.



27 | ©2023 Triad National Security, LLC. All Rights Reserved.


