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Key–value (KV) software has proven useful to a wide variety of applications including analytics, time-series

databases, and distributed file systems. To satisfy the requirements of diverse workloads, KV stores have

been carefully tailored to best match the performance characteristics of underlying solid-state block devices.

Emerging KV storage device is a promising technology for both simplifying the KV software stack and im-

proving the performance of persistent storage-based applications. However, while providing fast, predictable

put and get operations, existing KV storage devices do not natively support range queries that are critical to

all three types of applications described above.

In this article, we present KVRangeDB, a software layer that enables processing range queries for exist-

ing hash-based KV solid-state disks (KVSSDs). As an effort to adapt to the performance characteristics of

emerging KVSSDs, KVRangeDB implements log-structured merge tree key index that reduces compaction

I/O, merges keys when possible, and provides separate caches for indexes and values. We evaluated the

KVRangeDB under a set of representative workloads, and compared its performance with two existing data-

base solutions: a Rocksdb variant ported to work with the KVSSD, and Wisckey, a key–value database that

is carefully tuned for conventional block devices. On filesystem aging workloads, KVRangeDB outperforms

Wisckey by 23.7× in terms of throughput and reduce CPU usage and external write amplifications by 14.3×
and 9.8×, respectively.
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1 INTRODUCTION

As the importance of key–value (KV) workloads has increased, so has the sophistication of
modern KV databases [9, 12–14, 22, 25, 31]. Popular key–value databases, such as RocksDB [14],
are carefully optimized to extract performance from underlying flash-based SSDs. Log-structured

merge (LSM) trees [26] are used as the core data structure for these purposes: adaptive I/O size,
disk request alignment, and key–value store ordering. Mordern SSDs are usually managed in larger
and aligned blocks. In spite of the significant efforts spent to improve the efficiency of storing small
keys and values into larger blocks, the block-oriented interface still leads to several possible sources
of inefficiency for KV workloads. First, the minimum device I/O is bound to the block size, regard-
less of the requested key and value size. As a consequence, latency-sensitive workloads without
effective data prefetching experience large amounts of read amplification, as 4K-blocks are read to
retrieve much smaller values. Second, to minimize the external read and write amplification associ-
ated with LSM compaction, existing state-of-the-art KV store only performs compaction on keys,
while values are stored separately. Such storage policy provides efficient insertion and retrieval
performance, at the cost of expensive garbage collection when values are frequently updated or
deleted. Finally, interest is rising in computational storage devices or storage devices that support
the offloaded programmed analysis and reduction functions. These devices promise much lower
query latencies, as common searching and reduction functions can be performed within the storage
without sending data back to the host CPU. However, when the structure and metadata describing
the LSM is updated in the host memory instead of the storage device, it is typically impossible to
semantically interpret the contents of a block device.

To address these three issues, researchers proposed key–value interfaces for flash-based stor-
age called KV solid-state disks (KVSSDs) [1, 4]. These KVSSDs directly support the insertion,
retrieval, and deletion of arbitrarily sized KV data. During this process, two competing device de-
signs have arisen that attempt to address different workloads. Hash-based KVSSDs, such as the
one produced by Samsung [18], deliver fast individual KV operations but are incapable of range-
ordered iteration. In contrast, LSM-based KVSSDS [15, 16, 35] require additional on-device process-
ing support, but they maintain the key ordering entirely within the KVSSD, thus eliminating the
external read and write amplification incurred by compaction. Most real-life applications are a mix
of both point and range queries [20, 28, 36, 39, 41]. While a workload containing any range queries
can benefit from an LSM-based KVSSD, we can expect substantial performance degradation given
a large portion of the workload is not range queries. Significant processing power within LSM-
based KVSSDs are allocated to maintain the LSM organization, slowing down the point queries.
Hence, a hash-based KVSSD with support for range queries in host applications could become an
attractive solution to the dilemmas described above.

In this article we present KVRangeDB, a KV store designed to exploit the fast point operations
from hash-based KVSSDs while providing support for efficient range queries. KVRangeDB is im-
plemented on the host side in a layer between the KV applications and the KV device. We employ
similar ideas of the key value separation used by Wisckey [23], i.e., using a small in-storage LSM-
tree to store keys and preserve key order, while the value is stored separately using the device’s
KV interface. The key difference from Wisckey is that we preserve point query performance by
directly accessing the device through key value interface instead of using an LSM tree index that
incurs multiple I/O operations. Additionally, KVRangeDB effectively offloads the value log garbage
collection required by Wisckey into the device, which significantly mitigates host side CPU usage
and reduces the external write amplification.

We conduct experiments to demonstrate how KVRangeDB outperforms Wisckey with respect
to aging. In these experiments, we first load 500 million records. Then we perform three rounds
of aging process, consisting of multiple delete/update/insert operations. Garbage collection
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Fig. 1. Record aging comparison between Wisckey, a block device key–value database, and KVRangeDB, a

KVSSD key–value database.

was triggered for Wisckey at the end of each aging round. Detailed experiment setup and
methodology are described in Section 4. Figure 1 presents the results of Wisckey on traditional
block SSDs and KVRangeDB on KVSSDs. The results show that Wisckey experiences substantial
write amplification at the host compared to our proposed KVRangeDB on key–value interfaced
device. This write amplification leads to lower throughput and higher CPU costs at the host when
KV stores interface with block-level devices.

To better understand the performance characteristics of the key–value interface, we have fo-
cused on two important storage system workloads: key–value database workloads and file sys-
tem metadata workloads. Both of these workloads emphasize the performance of small update,
retrieval, and deletion operations that are already supported by the existing key–value device.
However, key–value databases and file system metadata operations also leverage range queries
that require the retrieval of sequences of consecutive key–value pairs. Such types of operations
are are not natively supported by the device interface of the commercially available key–value
storage device to date. To cope with this limitation, we provide an efficient software-based range-
query capability to analyze the device under realistic usage scenarios.

In this article, we describe the detailed design of KVRangeDB and the performance of the only
commercially available KVSSD and we attempt to answer the question whether a key–value inter-
face for the storage device is superior to the traditional block interface. The contributions include
the following:

• A detailed design of KVRangeDB that employs various novel techniques to enhance effi-
ciency of a hash-based key–value storage device.
• Comparison of a key–value workload using a hash-based key–value storage device and a

block device.
• Comparison of file system metadata workloads using a hash-based key–value device and a

block device.
• A senescence/aging analysis of block-based key value databases and a KV database imple-

mented on a key–value interface.

2 BACKGROUND

In this section, we briefly review the emerging key–value interface storage devices and the state-
of-art for software key–value stores. Then we introduce how modern file systems use key–value
storage to manage metadata.
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Fig. 2. Comparison between (a) traditional software KV system stack and (b) KVSSD system stack.

2.1 KVSSDs

Flash vendors have provided users a variety of alternative interfaces to flash-based storage
devices. Open Channel SSDs [6] moved the majority of the FTL into software allowing users to
manage the physical placement of blocks and access the device’s internal parallelism. More recent
Zone Namespace devices [1, 5] provide an interface that allows users to leverage a block-oriented
page append interface and indicate to the devices groups of blocks that can be erased efficiently.
Most recently, the storage industry has standardized a key–value device interface [1, 4] that
simplifies the mapping of popular key–value software interfaces to the device interface [15, 16, 35].
Currently, Samsung provides KVSSD products [18] with a hash table implementation [18, 19]
targeting fast put/get performance and low write amplification.

Figure 2 illustrates the system stacks for KVSSD-based systems. Traditional software KV stores
involve complex key–value to file and then file to block translations done by the file system and
block layer of the operating system. By contrast, KV stores based on KVSSDs leverage a thin
layer of software consisting of only a device driver and a user space KV library. KVRangeDB is
built on top of the KV library layer as shown in Figure 2(b). KVRangeDB can be also seen as an
enhancement of the KV library layer. The KVSSD provides put, get, delete, as well as basic KV
iteration operations. Its KV iteration interface allows traversing a group of keys (with the same
4B key prefix) without key ordering. For ordered key scans for arbitrary keys, we implemented
a range query engine using the device iterator capable of retrieving all keys stored on a device.
We then used an in-memory priority queue to store all keys from the seek position up to the scan
length. The range query latency turned out to be impractically long for real-life applications, in
the ballpark of tens of seconds for a 10 million records dataset.

2.2 Modern Software KV-stores

Modern KV-store applications [8, 9, 13] rely on software KV engines to translate the key–value
interface to the block interface used by HDDs or SSDs. State-of-art software KV stores [3, 12, 14]
use LSM-tree data structures [26] for efficient reads and writes. LSM-trees organize KV objects
into multiple levels of large, sorted tables (SSTable). All writes and updates occur as out-of-place
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Fig. 3. TableFS metadata management schema illustration.

writes to the top-level table. Reads search from the top-level table to the bottom-level tables for
the most recent data. LSM-trees achieve high performance by converting small writes into large
sequential I/Os that are optimal for the underlying device. However, this comes at the cost of high
CPU utilization and I/O amplification as previous work shows [23, 25, 31].

LSM-trees use compaction for efficient KV scans and get performance. To reduce the write
amplification overhead caused by compaction, Wisckey [23] proposes the separation of keys
from values for LSM-tree-based KV stores. Wisckey stores values in a log and maintains a small
LSM-tree as an index that maps keys to offsets to the value log. While improving write perfor-
mance, this indirection reduces range query efficiency. The value log additionally requires garbage
collection that adds complexity to the design.

2.3 File Systems Using Ordered KV-stores

Several local and distributed file systems [2, 21, 27, 32, 37, 40] used KV stores for file system meta-
data management. The main advantages of using KV-store for metadata management instead of
traditional extent trees or B-trees is scalability and write performance. However, for efficient di-
rectory traversal, these systems often require the underlying KV-store to provide efficient ordered
KV scan operations.

In this section, we describe TableFS [32] as an exemplar and briefly introduce how to use a
KV-store to manage file system metadata. Figure 3 illustrates the metadata schema of TableFS.
Each TableFS record stored in the KV-store corresponds to a file or directory in the file system.
The variable length key consists of a 64-bit inode number of the parent directory and the name of
the file. The value contains the inode number of the file and the file’s various attributes (type, size,
permission bits, owner information, etc.).

To resolve a full file system path name, TableFS starts searching from the root inode. Then
it traverses each level of the directory tree with a search key that combines the inode number
of the current directory and the next component name in the path. For file system operations
such as mkdir, mknod, unlink, lstat, and so on, the file name is first resolved and then the
corresponding put, get, delete KV operation is performed. For readdir operations, range queries
are used. TableFS first resolves the target directory path name and then range queries records using
the directory’s inode number as the key to list all children of that directory. TABLEFS implements
a light-weight locking mechanism [32, 34] to guarantee the atomicity and the correctness under
concurrent accesses.
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Table 1. Key Challenges and Corresponding KVRageDB Design

Challenges Design ideas

How to saturate device bandwidth for small
records?

Packing multiple small records (Section 3.2)

How to implement efficient index structure? LSM tree structure on top of native KV
interfaces (Section 3.3)

How to amortize latency for separate value
retrieval?

Leverage value prefetch and packing heuristic
(Section 3.4)

How to improve efficiency for empty
queries?

Hierarchical bloom filter for point and range
queries (Section 3.5)

3 KVRANGEDB

KVRangeDB is designed to support efficient range queries on hash-based KV storage devices while
retaining the native put/get performance benefits from the device. A critical feature is to manage
an ordered key index separately from the data. For a range query, we will first check the key index
and find the target keys in the queried range and then retrieve the values from the device. The idea
seems straightforward, however, there are many problems to consider.

Table 1 outlines the key challenges for efficient range queries on hash-based KV storage devices
and how our KVRangeDB design addresses those fundamental problems. We will detail our design
choices in the following sections.

3.1 Basic API

KVRangeDB provides key–value semantics with range query support, similar to the APIs of
RocksDB [14] and LevelDB [12]. An iterator interface is provided to perform range query or scan
operations. We define the following APIs for our KVRangeDB (the user hint API will be discussed
in Section 3.4):

• put(k,v): Put new key–value pairs.
• get(k,v): Retrieve value from key.
• delete(k): Delete key–value pairs.
• iterator: Iterator for range query.

– seek(k): Moves the iterator to the first key–value pair with key greater than or equal
to the seek key.

– next(): Move the iterator to the next key–value pair.
– valid(): Whether iterator is valid.
– key(): Return the key of the current iterator.
– value(): Return the value of the current iterator.
– hint.scan_length: Specify the user hint for the scan length.

3.2 Packing Smaller Records

In the rest of the article, we use logical keys and user keys interchangeably as the application
keys. We define physical/device keys as the actual key written to the device with the KVSSD KV
interface. For smaller size records, packing multiple values into a single physical record can yield
better write throughput and mitigate the performance decrease at large key counts. The logical
key to physical key mapping can also serve as a key index to provide the range query capability
over logical keys, accomplishing two goals with one mechanism.

Figure 4 illustrates how smaller KV records are packed into a large physical record. Sam-
sung KVSSD shows almost flat put IOPS for records smaller than 4 KB [18, 30]. Multiple smaller
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Fig. 4. Packing smaller records and translating user keys.

logical records can be packed into a single large physical record around 4 KB to yield higher write
throughput and reduce the number of physical keys managed on the device. The key index keeps
the logical keys to physical keys mapping for retrieving records by the logical keys, which requires
a linear scan on the physical record to extract the user record. To support range query on the logi-
cal key, we use LSM tree to maintain the logical key to physical key translation. The main reason
to choose LSM tree as the data structure for logical to physical key mapping instead of traditional
B/B+ tree is to achieve higher write performance [12, 14, 26].

Point query processing: When performing point queries on the packed records, LSM tree key
index is consulted first to find the physical key and then the value from the packed physical record
is retrieved.

Range query processing: When range queries are performed, the LSM tree key index is traversed
to find the physical key mapped to the target user key and retrieve the values in the queried range
separately.

Update and remove operations: We propose two approaches to handle update and remove oper-
ations of the existing packed records. First, we can use in-place update mechanism that requires
read-modify-write to the packed physical records. Alternatively, we can always assign new physi-
cal keys to the updated records (out-of-place update) to maintain high write throughput and apply
background garbage collection to clean up the stale records as shown in Figure 5.

3.3 Building a Key Index for Range Queries

This section will describe in detail how we design the key index to support range queries on a
key–value storage device. Compared to Wisckey [23], which also employs key value separation,
Our design has two main advantages.

• The get operations, or point queries can be fulfilled by a single read I/O directly from the
device.
• We effectively offload the value log garbage collection to the device side which significantly

reduces host CPU usage and external read/write amplifications.

As we mentioned in Section 3.2, to achieve high write/put throughput performance we choose
an LSM tree-based key index for logical key to physical key mapping when packing smaller records.
For other records (large value records or frequently accessed records), however, we simply leave
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Fig. 5. LSM tree key index design for supporting range queries.

the logical keys in the LSM tree key index to achieve logical key ordering for range queries and use
the logical key as the device key directly without the need for logical to physical key translation.
This is a core difference when compared to Wisckey [23]. Wisckey needs to consult the key index
for both point and range queries to locate and retrieve the values from the value log. However, for
point queries with KVRangeDB, we can bypass the index and directly use the logical key to retrieve
the value from the device with exactly one I/O for large unpacked records. For example, as shown
in Figure 5, lkey1, lkey7, lkey12, and so on, are unpacked records that can be retrieved directly from
device through the logical keys. Records lkey3, lkey52 are packed into a physical record (physical
key pkey12) and need to go through key translation to retrieve the value of the records.

To balance write and range query performance, we must carefully design the LSM tree structure.
In our LSM tree index design, we use separate keys to store each data block and the index block
(here block is not fixed size block in the block device, it can be any size). Figure 5 illustrates the LSM
tree key index for KVRangeDB. Similarly to levelDB and rocksDB, the LSM tree index contains a
memtable, multiple sorted SStables based on logical keys and manifest. The manifest uses a single
KV record. For SStable storage, we use separate device KV pairs to store each data block and index
block. The data block keys are the SStable number plus the offset. There is a single device KV pair
for each index block using the SStable number as the key and with the value containing the key
range information and offset for each data block.

Fig. 6. Bypassing index checking for hybrid key

translations.

It is not practical to expect that users always
know in advance whether a logical key is in a
packed record or directly stored as a physical key.
To cope with that, we implement a scheme called
hybrid key translation. Hybrid key translation pro-
vides an efficient mechanism to determine if the key
index must be consulted or can be bypassed for a
value retrieval. In the context of get operations pro-
cessing, it requires checking the key index to make
sure whether the queried key is translated or not.
In our design, we leverage a small bloom filter [7]
to reduce the overhead of key index checking when
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the keys are not translated and can be directly retrieved from the device with the logical/user
keys.

As illustrated in Figure 6, when we process the get operations, we consult the bloom filter. If
the filter returns negative (dashed arrow), then the queried key is definitely not translated, and we
directly retrieve the value from the device with the logical key. Otherwise (solid arrow), we will
consult the key index to find the physical key for the value. In a false-positive case, i.e., logical key
are not translated to physical key, we will still go to the key index for consultation (solid arrow).
Since the key index has the global view of all the logical keys mappings (if logical keys are not
translated, the physical key counterpart will be null as shown in Figure 6). Then we go to the
device to retrieve the value with the logical key. Since the false-positive rate is relatively low, the
overhead of extra key index checking can be neglected.

3.4 Value Prefetching and Caching for Range Queries

The key index introduces two problems that hinder efficient query processing. First, unlike
LSM-based software KV stores [12, 14] that pack key and values together, the range query in
our design will need to consult the index first to determine the target keys in the queried range.
Then, we need to separately issue I/Os to retrieve the values associated with the target keys if
the user also asks for values. This requires additional I/Os to satisfy the range query. Second, the
record packing introduces key translation from logical keys to physical keys, and the value may
not be directly retrieved with the logical key for simple point queries. In such a case, the point
query performance will be impacted by the additional I/Os for index look up.

We propose two approaches to resolve these issues. The first approach is to leverage user hints
for prefetching the values to overlap the value retrieval latency. We implemented two additional
read options for range query, i.e., scan length and upper bound key. Since users may have prior
knowledge of the queries (e.g., during a table scan, what is the approximate number of entries in
the table; or in a query for events between two timestamps, what is the end timestamp, etc.), by
applying those hints, we can prefetch the values in advance to hide the latency for accessing the
values separately. Besides user domain knowledge, proper profiling can be also used to help ex-
tract hinting information to better leverage our hint interface. We also design a prefetch throttling
mechanism to prevent too many in-flight prefetch requests that may increase the device queueing
time and affect the other I/O requests.

The second approach is to leverage the temporal locality of the packed records. Application
may write the adjacent records (in defined key order) together and may get packed into a single
physical record. When range queries are performed, the LSM tree key index is traversed to find
the physical key mapped to the target user key. We will cache the other records packed in the
same physical records. When following next() and value() is called, we can examine small cache
and on a hit, return the value directly without issuing I/O to the device. In the worst-case scenario,
we still perform the same number of I/Os as no packing. In Section 4.3, we will demonstrate how
real-world applications can leverage packing for range queries.

3.5 Range Filter for Empty Queries

Given typical key sizes compared to the typical number of records stored within a key–value
database, most stores have only a small portion of the key space occupied. As a result, queries
may result in empty/negative replies, and thus we need an efficient mechanism for deciding that
keys do not exist. In KVRangeDB, we design hybrid filters as an auxiliary structure to filter out
empty/negative queries for both point and range queries. (For example, “Is key 7 in the store?” or
“Do any keys between 3 and 100 exist in the store?”). Filters are compact/compressed structures
that can be completely stored in memory. For a typical data store with 1 billion keys, the key index

ACM Transactions on Storage, Vol. 19, No. 3, Article 24. Publication date: June 2023.



24:10 M. Qin et al.

Fig. 7. Hierarchical bloom filter for range queries filtering.

size may be tens of gigabytes that may exceed the available memory resources dedicated to the
database and an alternate filter must instead be designed as an in-storage data structure. Typical
filters only require very small memory footprint (one to two gigabytes per billion keys) and can
fit into small memory budgets successfully.

Bloom filters are well studied [7] and have been deployed in various software key–value
stores [12, 14]. As mentioned earlier, KVRangeDB also uses a bloom filter for our hybrid key trans-
lation algorithm. However, simple bloom filters are not efficient to handle range queries (“Do any
keys between 3 and 100 exist in the store?”). We could query every possible key by accessing
bloom filters multiple times (from key 3 to key 100) to determine whether the queried range exists.
However, such a method suffers from high CPU cost and false-positive rate.

Recently, more advanced filters were proposed [24, 39] with similar purpose for range queries
especially for those short-range queries with high probability of being empty. Unlike the prior
work [24, 39] that is designed for block-based range filters targeting LSM-tree-based KV stores, we
propose a lightweight unified in-memory range filter for accelerating both empty point queries and
empty range queries. As opposed to storing filters for each sorted-run, we do not store any filter
data in storage but build the filter on the fly when opening the database (we can also persist the
filter data on the devices). There are two main reasons for this design. First, unlike LSM-tree-based
KV-stores that need to scan the entire database to retrieve all keys in the database, our KVRangeDB
separates the sorted key index from the value store and can retrieve the keys efficiently. Second,
building the range filters on the fly is more flexible to accommodate fast shifting workloads by
altering the filter designs. For example, some workloads that frequently result in empty point
queries may only need a simple bloom filter with lower memory costs, and workloads that rarely
encounter empty queries may simply discard the range filter altogether.

In our design, we extend the idea of prefix bloom filter [14] and use multiple layers of a prefix
bloom filter, each with different sizes of prefix to enable efficient range filtering. When building
the filter, each key in the database stores various length prefixes into each level of bloom filters
(the bottom level stores the full key bloom filter that also works for point queries). Range queries
that consult the filter will be broken down to multiple prefix sets according to the top-level bloom
filter prefix length. For each prefix set covered by the top-level prefix length, it can then recursively
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probe the lower-level bloom filters to determine if there are potential keys in the checked range.
As long as there is one possible key existing in the queried range, the filter will return positive
and requires checking the key index in storage to satisfy the query. However, if the filter returns
negative, then the queried range is definitely empty, and we can directly return and save the I/O
cost of checking the key index.

Figure 7 illustrates how our hierarchical range filter works, through an example. Consider we
store records with the keys shown at the bottom (the key size is 2 bytes, 0x57...). The hierarchical
range filter is designed as four levels of bloom filters (BF_0 to BF_3). The top-level bloom filter
BF_0 is constructed using the 5 MSB bits prefix (bits 7-3) of all keys in the store. Each element
in the top-level bloom filter covers a range of eight keys. A negative result of BF_0 filter check
means there is definitely no key existing in this key range. Each lower level filter uses 1 more
bit prefix and covers half of the key range than the upper-level filter. The bottom level stores the
full key bloom filter that also works for point queries. As an example, consider range query “scan
[0x51, 0x53]” as shown in the top left of Figure 7. We first consult the top-level filter whether 0x50
prefix (covering key range from 0x50 to 0x57) exists. The top-level filter returns “yes,” and it keeps
consulting the next level with 0x50 (BF_1 prefix 0x50 covers key range from 0x50 to 0x53). BF_1

returns “no,” which means the query key range (0x50 to 0x53) is definitely empty in the store. A
range query may break into multiple prefix checks, each covering a smaller range as shown in the
query example on the top right. As long as there is one positive result when we reach the bottom
level, a key possibly exists in the queried range.

One critical component of a hierarchical bloom filter design is the amount of memory to dedicate
to each level of the data structure. Intuitively, higher-level filters may contain less distinct keys
due to shorter prefix lengths and may require less memory for the filter. In our design, we use a
simple strategy to allocate the memory footprint as follows, which has thus far worked well,

Mi = M
i + 1
∑

N

n=1 n
, i = 0, 1 . . .N − 1,

where N is the number of levels for the Hierarchical bloom filter, M is the total memory budget
for the range filter, and Mi is the memory budget for the ith-level filter (i start from 0 to N ).

4 EVALUATION

This section presents the experimental results of Yahoo! Cloud Serving Benchmark (YCSB) [11]
and TableFS [32, 34], a real-world KV application that relies on range queries. We compare
KVRangeDB against two other solution: Wisckey [23], the state-of-art software KV-store on block
devices, and RocksDB [14], the industry counterpart, ported to KVSSD. We analyze how each opti-
mization technique presented here contributes to the overall performance improvement and how
they impact different collections of KV operations.

4.1 Methodology

4.1.1 Experiments Setup. Table 2 lists the detailed hardware information. Block SSD and KVSSD
use the same SSD hardware device, except that the firmware is different.

Since the complete Wisckey source code is not disclosed to public, we implemented Wisckey
according to the article for this evaluation. Instead of using LevelDB to store the user key to <log
offset, value size> mapping in the original article, we use RocksDB [14], which has better overall
performance. To make our comparisons using the same memory budget and exclude page cache
effects for the block device, we use direct I/O mode for the Wisckey implementation, including the
RocksDB index and value log operations. The evaluation configurations within our experiments
are listed as follows:
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Table 2. Hardware Specification

Component Description

CPU Intel Xeon Silver 4216 @ 2.1 GHz, 16 cores

Memory 96 GB DDR4 @ 2133MHz

SSD PM983 3.84TB x4, (∼580k 4 KB read IOPS)

KVSSD PM983 3.84TB x4, (∼200k 4 KB read IOPS)

Memory 128 GB DDR4

OS Linux version 4.15

• Wisckey: Wisckey implementation on a conventional block SSD. The values are packed in
a contiguous log file with 1MB log buffer. The key to log offset mapping for each record is
stored in RocksDB.
• RocksKV: RocksDB implementation ported to the KVSSD. It uses the key–value interface

instead of a file system interface to store the SSTable files and metadata files. For SSTable
files, we store each data block with a separate record using the combined SSTable file number
and block offset as the key. Manifest files are stored as a monolithic record.
• KVR: Baseline KVRangeDB implementation without hybrid record packing.
• KVR-PF: Baseline KVRangeDB optimized with value prefetching for range queries.
• KVR-PK: Baseline KVRangeDB optimized with hybrid record packing.
• KVR-PK-PF: Baseline KVRangeDB optimized with hybrid record packing and value

prefetching.

4.1.2 Workloads. We conducted two categories of experiments to evaluate the above systems.

• To measure the KVRangeDB performance, we run comprehensive micro-benchmarks includ-
ing scan operations of various length, with/without retrieving values, as well as simple put,
get, and seek operations under YCSB. Quantitative description for each query workload is
explained in the following sections.
• File system applications under TableFS, which utilizes a KV-store as its metadata manage-

ment engine. This application uses a large real-world directory tree, executes find commands,
lists file/directory contents, and list metadata that are all composed of mixed put, get, and
range queries, and we emulate the file system aging process with multiple rounds of updat-
ing, removing, and inserting files/directories.
TableFS only uses KV-store to store the file metadata. The file data blocks are stored sepa-
rately. In our experiments, we use KVRangeDB to replace TableFS’s KV-store (LevelDB) and
only examine the metadata operations that are the main bottleneck of the filesystem work-
loads [32]. The actual file data blocks are not included in the given filesystem tree and our
experiments.

For micro-benchmarks (YCSB), we use single SSD/KVSSD. To better emulate real-world TableFS
application, we use four devices in RAID0 mode. We use linux md to configure RAID0 for block
SSDs. For the four KVSSD array, we spread the records through hashing the key [29].

4.2 Results for YCSB

We use two datasets for YCSB experiments: The first dataset of 250 million large records (with
16-B key and 4000-B value size) does not leverage packing; second dataset of 1 billion small
records (with 16-B key and 1000-B value size [38]) can leverage packing (we pack four logical
records to form a physical records). For all of our experiments, we first load all the data on the
device (the index is written with the data). We then run different query workloads to examine
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Fig. 9. YCSB Get performance (16 threads).

the performance of KVRangeDB, RocksKV, and Wisckey. For KVRangeDB, the bloom filter filter
described in Section 3.3 is constructed during the loading phase and persisted to the KVSSD when
database is closed. However, we bypass the bloom filter checking in the get workload, since it is
either fully packed or unpacked.

Fig. 8. YCSB write performance (16 threads).

Write performance. Figure 8(a) demonstrates
the throughput performance of loading data onto
the device. For smaller records, packing can be
useful in improving the overall write throughput
and reducing the number of keys managed by the
device as we discussed in Section 3.2. The loading
throughput of KVR-PK outperforms RocksKV by
14× and Wisckey by 1.3×. It is also worth noting
that RocksKV requires greater compaction I/O,
since it packs keys and values together. Packing
more records into a physical record yields higher
write throughput, and thus it enhances the data
loading efficiency. KVR-PK is beneficial for write-heavy use cases that contain lots of small records.
For 4000-B value size, KVR can achieve 18.8× better performance compared to RocksKV. KVR per-
forms slightly (∼15%) worse than Wisckey in terms of write operations, as Wisckey leverages large
sequential I/O for writes. However, Wisckey’s implementation suffers on removes and updates
(which require host-side garbage collection), contrary to KVRangDB that can directly remove and
update records from device through the user key. We evaluate remove performance as part of the
file system workloads in Section 4.3.

Point query. For RocksKV, a get operation requires examining several sorted-runs in each level
of the LSM-tree to finally retrieve the records, introducing multiple I/Os. Wisckey needs to look
up the LSM-Tree for the log offset of a record based on user key before retrieving the value from
the log. In contrast, KVRangeDB without packing (KVR) can fulfill the get request by a single
I/O using the user key through the KV interface provided by the device. Similarly to Wisckey,
KVR-PK only requires traversing a small LSM-tree to translate the logical key to physical key
and then retrieve the value from the device using the physical key. Hence, a small index cache is
enough to help reduce the I/O overheads from index lookup.

Figure 9(a) and (b) demonstrates the performance of simple get (or point query) workload. KVR
exhibits a large advantage over RocksKV for both no cache and 1-GB cache scenarios. KVR outper-
forms Wisckey for large records by 73% (no cache) and 39% (1 GB cache). KVR-PK provides slightly
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Fig. 10. YCSB range query performance.

lower performance than Wisckey with 1000 B value size, because the block device provides better
read performance compared to KVSSD.

Scan keys. For the scan key workload, KVRangeDB only needs to traverse a relatively small
LSM tree only containing keys. By contrast, RocksKV’s LSM-Tree comprises both keys and val-
ues, which may require more I/Os. KVR-PK/KVR achieve much better performance, ∼8× better
compared to RocksKV with 1 GB cache as shown in Figure 10(a) and (b). KVR-PK/KVR perform
slightly worse compared to Wisckey due to the device read performance disadvantage of KVSSD
(Wisckey also only needs single I/O to retrieve value after locating the log offset).

Some may wonder if scanning the keys only (without retrieving values) makes sense in
real-world applications. Here is an example of a typical file system workload (more details in
Section 4.3): Consider the command line utility ls, which lists files and sub-directories. In TableFS,
a ls -l $path command translates to a scan on the target directory that needs to retrieve value (call-
ing both key() and value()) for parsing stats in the inode. However, a simple ls $path command
only needs to iterate on the keys without reading the value (inode information).

Scan keys and values. On the flip side, KVRangeDB does not perform equally well with range
queries that retrieve values, since it costs a separate I/O for each value() operation. As shown
in Figure 10(c) and (d), when the scan length passes 40, KVR-PK-PF/KVR-PF perform worse than
RocksKV. The optimization of value prefetch with user hints improves the performance to some
extent (∼56%). From the analysis of real key–value workloads [41], the average scan length is
less than 20. Therefore, it may not be worth packing key and value together like RocksKV, which
mostly benefits longer scans with value retrieval (value() operation).
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Fig. 11. Results for loading file system tree to TableFS.

4.3 Results for TableFS

For the file system workloads [2, 33, 37, 40], we use a real file system trace from Los Alamos
National Lab that contains approximately 500 million files and directories (∼20 million directories
and ∼480 million files), and ∼90% files are marked as “cold,” which can leverage our hybrid packing
technique described in Section 3.2. The loading and aging phase consists of multiple file operations
such as path resolve, opendir, mkdir, mkmod, unlink, chmod, and so on, which translates into a
combination of put, get, delete workloads to the KV-store. At the end of each aging round, we
perform a value log garbage collection for Wisckey (around 25% difference between real metadata
capacity and actual storage usage). Value prefetching is enabled for range queries for both Wisckey
and KVRangeDB variants.

For KVR-PK-PF, we selectively pack multiple file inode records (which are marked as cold set)
under the same directory into a single physical record as described in Section 3.2. Since the files
in the same directory are loaded together, such packing can benefit range queries as discussed in
Section 3.2. For the remaining ∼10% hot files, we do not perform packing, and the values (inode
information) can be directly retrieved from the device through logical/application keys.

Load file system tree. Figure 11 presents the results of loading the file system tree into TableFS.
KVR-PK-PF yields a 33.9× speedup over Rockskv and 1.14× over Wisckey, respectively. Besides,
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Fig. 12. Results for aging TableFS file system tree.

KVR-PK-PF also reduces CPU consumption by 15× and 1.5×, respectively. We also collect the
number of I/O requests and read/write amplifications from/to the device. RocksKV incurs signifi-
cantly larger write amplification, 15.7×worse than KVR-PK-PF, due to constant compaction of the
sorted-runs. KVR-PK-PF also mitigates the read amplification enormously, specifically over 2000×
fewer than RocksKV and 14× fewer compared to Wisckey, from the direct get interface on the
device. KVR-PK-PF performs slightly worse than KVR-PF; however, it reduces CPU cost by 12%
(due to less number of write I/Os).

Aging the file system. Figure 12 demonstrates the results of aging the TableFS file system tree.
KVR-PK-PF outperforms RocksKV and Wisckey by 72× and 23.7×, respectively. Moreover, KVR-
PK-PF also saves CPU cost by 55.6× and 14.3×, respectively. The main negative factor of Wisckey is
the value log garbage collection caused by records update [15, 23]. Wisckey issues a larger number
of read I/Os, because it needs to lookup the key to log offset mapping for every get operation (check
file path existence) and also performs garbage collection after removes and updates of the records.
KVR-PK-PF greatly reduces read and write amplification by 385× and 9.8× compared to Wisckey.
This advantage is mainly attributed to using the direct key value interface on the KV devices to
store values that effectively offloads the value log garbage collection from the host to the device.
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Fig. 13. Performance, CPU, and read I/Os for TableFS workloads (C and T on the x-axis denotes physical

core and total thread counts).

Metadata-intensive operations. Figure 13 shows the performance and read I/O results for
metadata-intensive file system workloads. We use a limited number of CPU resources (four and
eight physical cores) to emulate the resource competition common in multi-tenant scenarios. We
assign 16/32 client threads for each physical core.

Parallel find workloads perform traversal of the files/directories in a breadth first search fash-
ion. These workloads contain path lookup and readdir operations that translate to get and range
queries. KVR-PK-PF yields ∼5.1× better performance on average compared to RocksKV and re-
duces CPU cost by a factor of 3.9×. This is because in a real file system directory tree, there are
lots of directories with very few sub-directories and files (leading to short scans). Wisckey out-
performs KVR-PK-PF by ∼30%, simply because current block SSD has much higher read IOPS
performance (∼3×) as shown in Table 2 and better latency characteristics [15].

Parallel “ls -l” contains path lookup and readdir operations that translate to get and range
queries with both key() and value() operations with various scan lengths (depending on the
number of files and sub-directories within a queried directory). KVR-PK-PF yields ∼5× better per-
formance on average compared to RocksKV and reduces CPU cost by 4×. KVR-PK-PF slightly
improves performance and reduces CPU consumption, since it reduces get I/O operations (∼10%)
when the queried directory file inodes are packed.

Parallel lstat workload consists of get operations only. Compared to RocksKV and Wisckey
that require multiple I/Os per get operation (RocksKV needs to examine multiple sorted-runs or
SSTable files, Wisckey needs to lookup the log offset from user key before retrieving the value
from the log), KVR only requires a single I/O per get through the KV device interface. Thus, KVR
reduce 15.9× and 1.9×, respectively, compared to RocksKV and Wisckey. Besides, KVR outperforms
RocksKV and Wisckey by 51× and 1.12× and reduces CPU usage by 30× and 1.15×. The file system
workloads showcase the advantages of KVR, even with the current KVSSD read performance being
relatively low compared to similar hardware block SSD. Despite the fact that KVR-PK-PF requires
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more than one I/O per get when keys need to be translated, its performance is barely affected
under these workloads. To understand that, we analyze the workloads and found that most lstat

operations are performed on hot file set whose keys do not need translation (application key equals
physical key), thus KVR-PK-PF performs similarly to KVR-PF.

For simple parallel “ls” without “−l,” which is converted to a range query without value() op-
eration, KVR-PF performs 21× better compared to RocksKV. The cause of RocksKV’s poor perfor-
mance is that the SSTable packs key and value together, thus the cost of range queries only calling
key() is similar to range queries that calls both key() and value(). KVR-PF, KVR-PK-PF, and
Wisckey have similar performance, since they separate keys and values.

5 RELATED WORK

Key–value device interfaces has been a frequent topic of research, since the release of the first
key–value device prototype [18]. Several researchers have explored command set extensions for
key–value devices [15, 19, 35] and key–value device interfaces have also been explored as pos-
sible interfaces to SmartNICs [22] and persistent memory [10, 17]. Some recent work explored
how to implement conventional block oriented storage features such as redundancy to key–value
interfaced devices [29, 30].

The design of KVRangeDB, our range query facility for key–value devices, extends several
techniques developed for LSM-based key–value databases to the key–value device interface. Wis-
ckey [23] proposed the idea of separation of key and values to reduce write amplification during
compaction and by storing values separately in a log. Zhang et al. proposed SuRF [39], which uses
a compact trie structure as range query filter to accelerate range query performance on LSM tree-
based software KV stores. KVRangeDB applies these techniques without requiring the use of an
LSM tree or value-log for key–value storage devices.

6 CONCLUSION

In this article, we proposed and implemented KVRangeDB to support efficient range query capa-
bility on hash-based KVSSDs. Our design leverages a secondary key index based on log structure
merged tree. With that we can optionally pack records through logical to physical key translation,
so as to mitigate the key management overhead in the KVSSD device. We also employ user hints
for value prefetching to accelerate scans with value retrieval. Moreover, we leverage the state-of-
the-art range filter to efficiently improve empty range/point queries.

We evaluated our design with a series of real-world applications. Our results show that
KVRangeDB provides faster put, get, short scans performance, and lower host CPU utilization
compared to the state-of-art software KV engine (Wisckey) on conventional block SSD, although
it may not be the optimal choice for workloads with extremely long scans with value retrieval.
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