
Toward Standardized, Open Object-Based Computational Storage
For Large-Scale Scientific Data Analytics

Qing Zheng
Los Alamos National

Laboratory

Los Alamos, NM, USA

qzheng@lanl.gov

Jason Lee
Los Alamos National

Laboratory

Los Alamos, NM, USA

jasonlee@lanl.gov

Dominic Manno
Los Alamos National

Laboratory

Los Alamos, NM, USA

dmanno@lanl.gov

Gary Grider
Los Alamos National

Laboratory

Los Alamos, NM, USA

ggrider@lanl.gov

CCS CONCEPTS

• Information systems → Storage architectures; Online analyt-

ical processing engines; • Hardware → External storage.

EXTENDED ABSTRACT

With the increasing reliance of scienti�c discovery on insights de-

rived from massive datasets, attaining fast, e�cient data analytics

performance has become a key component of modern HPC data cen-

ter engineering. While fast interconnection network, fast storage

media, and a proliferation of open-source data analytics software

such as Apache Hive [2], Presto [7], and DuckDB [5] have made

the deployment of distributed, high-performance data analytics

platforms much more feasible and convenient than it was many

years before, bottlenecks still exist that prevent applications from

reaching a higher level of performance.

Most notably, excessive data movement, being one of these per-

formance barriers, occurs when queries of very high data selectivity

continue to be processed in a form that resembles a full dataset

scan. That is, despite that a query may be interested in only a tiny

subset of rows or columns in a large dataset, it is still processed by

reading all of that dataset from storage nodes to worker nodes.

This approach results in a majority of rows or columns being

transferred unnecessarily, as they will eventually be discarded by

the worker nodes, with only those that match the query criteria

being returned to the querying program. Unnecessary data transfer

can lead to substantial delays in query response times, as data

movement remains a time-consuming process overall. In addition,

reading an entire dataset back into worker nodes may require the

same amount of memory as used by the original simulation, which

can be petabytes. Once the data is loaded, the subset of data chosen

for analysis can be many orders of magnitude smaller than the

original dataset, making the full data load and the memory allocated

for it an ine�cient use of supercomputer resources.

Building indexes alongside data helps. But indexing data itself

might incur massive data movement and may take a long time

to complete. Write-time data partitioning and indexing methods

allow for reduced data movement during index construction, but

a signi�cant amount of compute node resources might have to

be dedicated to the process and partitioning data typically only

accelerates queries on a single dimension — multi-dimensional

queries remain unaccelerated. Computational storage [1, 3, 6], with

its ability to perform computation very close to data, provides new

ways of accelerating queries by permitting direct query processing

This manuscript has been approved for unlimited release and has been assigned
LA-UR-23-30351.

Analysis 
User

Parquet, CSV, SST, …

Query

Simulation
Job

Data Insertion

Files, 
objects, 

…

OCS Server

Query 
Pushdown

OCS Plugin

Analytics Framework

Query Pushdown

OCSD Driver

OCSD OCSD OCSD OCSD OCSD OCSD

Gateway

NVMe/OF

Storage Services

Presto, Apache Hive, 
Trino, …

Figure 1: Object-based Computational Storage enabling analytics

o�load under popular storage services storing popular data formats.

within storage. This enables transferring only data relevant to a

query to a querying client rather than the entire dataset.

This research is to establish and demonstrate an open,

object-based computational storage architecture to drivemin-

imized data movement and more e�cient data retrieval per-

formance for queries against large scienti�c datasets.

Open standards facilitate interoperability, community support,

and vendor neutrality. Just as NFS sets the protocol for network

attached storage and ANSI T10 [4] de�nes SCSI devices’ Object-

based Storage Device (OSD) command set, we advocate for a similar

standardization e�ort for object-based computational storage. We

envision a standard, high-level interface for storage server

level query pushdown and a standard, low-level NVMe com-

mand set for device-level query o�load. We call the high-level

interface Object-based Computational Storage (OCS) interface and

the low-level interface Object-based Computational Storage Device

(OCSD) interface. As Figure 1 shows, a typical OCS analytics stack

consists of an OCS-aware analytics framework, storage servers sup-

porting the high-level interface, and NVMe computational storage

devices implementing the low-level command set.

Our work is motivated by 1) the growing interest in object stor-

age as a major data analytics data source, 2) a lack of open standards

for delegating query plans to object-based storage to speed up se-

lective data retrieval, and 3) the advent of NVMe as a modern

replacement for the outdated SCSI storage device interface upon

which the old OSD command set was built.

Collaboration has already taken place with industry part-

ners including SK hynix, AirMettle, NeuroBlade, and Versity.

Deliverables include an open-source reference implementation for

a gateway server implementing the high-level OCS interface, an

open-source reference implementation for an underlying storage

device implementing the low-level OCSD command set, demon-

stration of interoperability of proprietary products from SK hynix,

AirMettle, and NeuroBlade, and test vehicles acting as servers or

clients of both the high-level and the low-level interface.

https://orcid.org/0000-0002-7457-9874
https://orcid.org/0000-0003-1604-1395
https://orcid.org/0000-0002-6145-348X
https://orcid.org/0000-0001-5749-3377


Qing Zheng, Jason Lee, Dominic Manno, and Gary Grider

REFERENCES
[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. 1998. Active Disks: Programming

Model, Algorithms and Evaluation. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages and Operating
Systems. https://doi.org/10.1145/291069.291026

[2] Jesús Camacho-Rodríguez, Ashutosh Chauhan, Alan Gates, Eugene Koifman,
Owen O’Malley, Vineet Garg, Zoltan Haindrich, Sergey Shelukhin, Prasanth
Jayachandran, Siddharth Seth, Deepak Jaiswal, Slim Bouguerra, Nishant Bangarwa,
Sankar Hariappan, Anishek Agarwal, Jason Dere, Daniel Dai, Thejas Nair, Nita
Dembla, Gopal Vijayaraghavan, and Günther Hagleitner. 2019. Apache Hive:
From MapReduce to Enterprise-Grade Big Data Warehousing. In Proceedings of
the 2019 International Conference on Management of Data. https://doi.org/10.1145/
3299869.3314045

[3] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. 1998. A Case for
Intelligent Disks (IDISKs). SIGMOD Rec. (1998). https://doi.org/10.1145/290593.
290602

[4] D. Nagle, M. E. Factor, S. Iren, D. Naor, E. Riedel, O. Rodeh, and J. Satran. 2008.
The ANSI T10 object-based storage standard and current implementations. IBM
Journal of Research and Development (2008). https://doi.org/10.1147/rd.524.0401

[5] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management of
Data. https://doi.org/10.1145/3299869.3320212

[6] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. 1998. Active Storage for
Large-Scale Data Mining and Multimedia. In Proceedings of the 24rd International
Conference on Very Large Data Bases.

[7] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips,Wenlei Xie, Yutian
Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and Christopher
Berner. 2019. Presto: SQL on Everything. In 2019 IEEE 35th International Conference
on Data Engineering. https://doi.org/10.1109/ICDE.2019.00196

https://doi.org/10.1145/291069.291026
https://doi.org/10.1145/3299869.3314045
https://doi.org/10.1145/3299869.3314045
https://doi.org/10.1145/290593.290602
https://doi.org/10.1145/290593.290602
https://doi.org/10.1147/rd.524.0401
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1109/ICDE.2019.00196

	References

