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CCS CONCEPTS

• Information systems → Storage architectures; Online analyt-

ical processing engines; • Hardware → External storage.

EXTENDED ABSTRACT

With the increasing reliance of scienti�c discovery on insights de-

rived from massive datasets, attaining fast, e�cient data analytics

performance has become a key component of modern HPC data cen-

ter engineering. While fast interconnection network, fast storage

media, and a proliferation of open-source data analytics software

such as Apache Hive [2], Presto [7], and DuckDB [5] have made

the deployment of distributed, high-performance data analytics

platforms much more feasible and convenient than it was many

years before, bottlenecks still exist that prevent applications from

reaching a higher level of performance.

Most notably, excessive data movement, being one of these per-

formance barriers, occurs when queries of very high data selectivity

continue to be processed in a form that resembles a full dataset

scan. That is, despite that a query may be interested in only a tiny

subset of rows or columns in a large dataset, it is still processed by

reading all of that dataset from storage nodes to worker nodes.

This approach results in a majority of rows or columns being

transferred unnecessarily, as they will eventually be discarded by

the worker nodes, with only those that match the query criteria

being returned to the querying program. Unnecessary data transfer

can lead to substantial delays in query response times, as data

movement remains a time-consuming process overall. In addition,

reading an entire dataset back into worker nodes may require the

same amount of memory as used by the original simulation, which

can be petabytes. Once the data is loaded, the subset of data chosen

for analysis can be many orders of magnitude smaller than the

original dataset, making the full data load and the memory allocated

for it an ine�cient use of supercomputer resources.

Building indexes alongside data helps. But indexing data itself

might incur massive data movement and may take a long time

to complete. Write-time data partitioning and indexing methods

allow for reduced data movement during index construction, but

a signi�cant amount of compute node resources might have to

be dedicated to the process and partitioning data typically only

accelerates queries on a single dimension — multi-dimensional

queries remain unaccelerated. Computational storage [1, 3, 6], with

its ability to perform computation very close to data, provides new

ways of accelerating queries by permitting direct query processing
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Figure 1: Object-based Computational Storage enabling analytics

o�load under popular storage services storing popular data formats.

within storage. This enables transferring only data relevant to a

query to a querying client rather than the entire dataset.

This research is to establish and demonstrate an open,

object-based computational storage architecture to drivemin-

imized data movement and more e�cient data retrieval per-

formance for queries against large scienti�c datasets.

Open standards facilitate interoperability, community support,

and vendor neutrality. Just as NFS sets the protocol for network

attached storage and ANSI T10 [4] de�nes SCSI devices’ Object-

based Storage Device (OSD) command set, we advocate for a similar

standardization e�ort for object-based computational storage. We

envision a standard, high-level interface for storage server

level query pushdown and a standard, low-level NVMe com-

mand set for device-level query o�load. We call the high-level

interface Object-based Computational Storage (OCS) interface and

the low-level interface Object-based Computational Storage Device

(OCSD) interface. As Figure 1 shows, a typical OCS analytics stack

consists of an OCS-aware analytics framework, storage servers sup-

porting the high-level interface, and NVMe computational storage

devices implementing the low-level command set.

Our work is motivated by 1) the growing interest in object stor-

age as a major data analytics data source, 2) a lack of open standards

for delegating query plans to object-based storage to speed up se-

lective data retrieval, and 3) the advent of NVMe as a modern

replacement for the outdated SCSI storage device interface upon

which the old OSD command set was built.

Collaboration has already taken place with industry part-

ners including SK hynix, AirMettle, NeuroBlade, and Versity.

Deliverables include an open-source reference implementation for

a gateway server implementing the high-level OCS interface, an

open-source reference implementation for an underlying storage

device implementing the low-level OCSD command set, demon-

stration of interoperability of proprietary products from SK hynix,

AirMettle, and NeuroBlade, and test vehicles acting as servers or

clients of both the high-level and the low-level interface.
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