Replication W.S. Caching Strategies Replication Webadata Management in Large scale Data Centers For Distributed Metadata Management in Large scale Data

File System Architecture

Parallel data path with decoupled metadata path

Parallel Data Lab - http://www.pdl.cmu.edu/

Metadata = 1 + 2 + 3

Metadata Representation

Parallel Data Lab - http://www.pdl.cmu.edu/

Decoupled != Scalable

Single metadata server

HDFS, Lustre 1.x

Statically partitioned metadata servers

PVFS, Federated HDFS, NFS v4.1

Many existing metadata service don't scale

Our Goal is To Have Really Scalahe Metadata

Our Goal is To Have Really **HRAD**

Outline 1. Pathname lookup important limitation on scalability 2. Client-side caching represented by IndexFS 3. Replicated state represented by ShardFS 4. Experimental results

Path Resolution

Hierarchical permission checking

In order to resolve /a/b/c/..., need to test /a, a/b, b/c, ...

- *1) Permissions to lookup names under an intermediate directory*
- *2) The existence of the name*
- *3) The name represents a directory*

A set of recursive tests starting from the root

Naive Implementation

1 lookup RPC to server for each intermediate dir

BOTTLENECKS 1. Repeated RPCs 2. Hot spot servers holding names at the top of the tree

Parallel Data Lab - http://www.pdl.cmu.edu/

Outline 1. Pathname lookup important limitation on scalability 2. Client-side caching represented by IndexFS 3. Replicated state *represented by ShardFS* 4. Experimental results

Design Choice #1

Lease and cache dir lookup states at clients Block mutation ops until all leases have expired

Cache-Entry Expiration-time

Cache-Id Max-expiration-time

client-side cache table

server-side cache table

Fewer repeated RPCs & simple server states

Outline 1. Pathname lookup important limitation on scalability 2. Client-side caching represented by IndexFS 3. Replicated state represented by ShardFS 4. Experimental results

IndexFS Design

Distributes namespace on a per-dir partition basic Path resolution conducted by clients with an consistent lease-based lookup cache

Outline 1. Pathname lookup important limitation on scalability 2. Client-side caching represented by IndexFS 3. Replicated state *represented by ShardFS* 4. Experimental results

Parallel Data Lab - http://www.pdl.cmu.edu/

Replicates dir lookup states to all servers & broadcasts mutation ops to all servers

Principally a better decision if #client >> #server

Outline 1. Pathname lookup important limitation on scalability 2. Client-side caching represented by IndexFS 3. Replicated state represented by ShardFS 4. Experimental results

ShardFS Design

Distributes namespace on a per-file basic (sharding) All metadata servers can accept new files and perform path resolution

RPC Amplification **IndexFS ShardFS** * dir lookup state mutation op 0 ~ #path_depth path resolution 0 mknod unlink/getattr mkdir* #metadata_servers 1 + #partitions rmdir*/readdir #path_lookups + --#metadata servers chmod/chown on file

chmod*/chown* on dir

utime on file/dir

#metadata server

Zipfian Stat's

PI

PDL Group Meeting • 18

Zipfian Tree

Balanced Tree

1-day HDFS trace with 1.9M dirs & 11.4M files

Parallel Data Lab - http://www.pdl.cmu.edu/

References

IndexFS: Scaling File System Metadata Performance with Stateless Caching and Bulk Insertion. Kai Ren, Qing Zheng, Swapnil Patil and Garth Gibson. SC 2014

- TableFS: Enhancing metadata efficiency in local file systems. Kai Ren and Garth Gibson. USENIX ATC 2013
- Scale and Concurrency in GIGA+: File System Directories with Millions of Files. Swapnil Patil and Garth Gibson. FAST 2009
- YCSB++: Benchmarking and Performance Debugging Advanced Features in Scalable Table Stores. Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio Lopez, Garth Gibson, Adam Fuchs, Billie Rinaldi. SoCC 2011

BACKUP SLIDES

Target Namespace 90% dirs are small (less than 128 entries) Large dirs are really huge 90% dirs are of depth 16 or more Median file size smaller then 64KB for many fs'es

Distribution of FS Ops

Parallel Data Lab - http://www.pdl.cmu.edu/

Namespace Metadata

= dir index + object attributes + file data for small files

ParentDirld	ObjName	Objld	ObjSize	ObjMode	Userld	Groupld	Times	Embedded File Data	Other Metadata
ParentDirld	ObjName	Objid	ObjSize	ObjMode	Userld	Groupld	Times	Embedded File Data	Other Metadata
ParentDirld	ObjName	Objid	ObjSize	ObjMode	Userld	Groupld	Times	Embedded File Data	Other Metadata
ParentDirld	ObjName	Objld	ObjSize	ObjMode	Userld	Groupld	Times	Embedded File Data	Other Metadata
Кеу		Value							

• Parallel Data Lab - http://www.pdl.cmu.edu/

Sorted