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Abstract
Modern key-value stores often use write-optimized indexes
and compact in-memory indexes to speed up read and write
performance. One popular write-optimized index is the Log-
structured merge-tree (LSM-tree) which provides indexed
access to write-intensive data. It has been increasingly used
as a storage backbone for many services, including file sys-
tem metadata management, graph processing engines, and
machine learning feature storage engines. Existing LSM-
tree implementations often exhibit high write amplifications
caused by compaction, and lack optimizations to maximize
read performance on solid-state disks. The goal of this pa-
per is to explore techniques that leverage common work-
load characteristics shared by many systems using key-value
stores to reduce the read/write amplification overhead typi-
cally associated with general-purpose LSM-tree implementa-
tions. Our experiments show that by applying these design
techniques, our new implementation of a key-value store,
SlimDB, can be two to three times faster, use less memory
to cache metadata indices, and show lower tail latency in
read operations compared to popular LSM-tree implemen-
tations such as LevelDB and RocksDB.

1. INTRODUCTION
Key-value stores have become important underpinnings of

modern storage systems. Advantages provided by key-value
stores include their efficient implementations, which are thin
enough to provide the performance levels required by many
highly demanding data-intensive applications. Many com-
panies have built in-house key-value stores as a critical build-
ing block for their services (e.g., RocksDB [29] at Facebook,
LevelDB [20] and BigTable [7] at Google, and Dynamo [13]
at Amazon). To optimize for write-intensive workloads,
most of these distributed and local key value stores are based
on Log-Structured Merge-Tree (LSM-tree) [26]. The main
advantage of LSM-trees over other external indexes (such as
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B-trees) is that they use extensive buffering to maintain se-
quential access patterns for writes. Small updates on B-trees
may involve many random writes, making them inefficient
on storage devices.

However, there are several workload trends that are chal-
lenging LSM-tree implementations for high performance and
high scalability [33]. First, small entries are widespread, and
total capacity requirements for individual key-value stores is
increasing. For example, Facebook reported that 90% of its
Memcached pools store key-value entries whose values are
smaller than 500 bytes [2]. For a key-value store of a given
capacity, a smaller entry size means that more metadata is
needed, which includes indexes for locating entries in a data
block and filters for determining keys’ existence in the block
[5]. The increasing demand on key-value store’s capacity
makes it an economical choice to use fewer servers, each
of which has multi-terabytes hard disks or SSDs. There-
fore, both factors create memory constraints for metadata
of key-value stores.

Second, the key orders used by many applications are very
diverse. Many existing key-value stores exclusively support
either hash order or sorted order. However, we observed
that keys do not need to be strictly sorted in a wide range
of applications [17, 21, 30, 28, 1]. For these applications, the
primary key used in the key-value store can be divided into
two fragments: a prefix x and a suffix y. If range queries only
need to iterate through all the keys that share the same pre-
fix x, without any ordering requirement on y, we define the
workload as Semi-Sorted. Semi-sorted order is stronger
than hash order because semi-sorted scans do not fetch all
data. Notable examples of applications that use semi-sorted
keys include:

• Feature storage for recommendation systems: Recom-
mendation systems need to fetch features from a large
collection of entities such as users, news stories and
websites, and feed these features into a machine learn-
ing algorithm to generate a prediction [17, 21]. The
key schema used for feature storage can be in the for-
mat of a pair of ids like (entity id, feature id).

• File system metadata management: The key schema
used in some file systems [30, 28] has two parts: (par-
ent directory’s inode id, hash of file name). Using this
schema, a readdir operation in the file system only
needs to list the entries that have the same parent di-
rectory’s inode id as the prefix.

• Graph-based systems: Graph edges can be represented
as a pair of nodes (source node, destination node) [1].

2037



Many graph systems list all neighbors of a node with-
out ordering restrictions.

Third, many workloads require key-value stores to be ef-
ficient for both reads and writes. Yahoo’s research paper
shows that the ratio of read and write requests in its typical
low-latency workloads has shifted from anywhere between
2 and 9 to around 1 [31]. Moreover, most write operations
performed in many applications fall into one category called
Non-Blind Writes: these writes first perform a read op-
eration on the same key before inserting or updating a key.
For example, all write operations in POSIX file system meta-
data workloads are non-blind writes such that the file cre-
ation operation needs to first check the existence of a file
according to the POSIX standard. In the feature storage
for recommendation systems, counters that summarize user
behaviors such as clicks and impressions are often updated
only by operations that increase or decrease the prior value.
In such workloads, a better balance between read and write
performance for key-value stores is more desired.

In this paper, we propose a space-efficient sorted store,
SlimDB, that can be used as the core storage engine for ap-
plications with semi-sorted keys. SlimDB integrates three
novel techniques that exploit the above workload charac-
teristics for optimizing reads, writes, and the memory foot-
print: 1) a redesign of data block indexes with space-efficient
data structures specialized for semi-sorted data; 2) a novel
membership filter that bounds the worst-case read latency
in multi-level log-structured key-value stores; and 3) an an-
alytical model for generating layouts of in-memory indexes
and on-disk data storage with desired read and write am-
plifications. Experiments show that SlimDB is two to three
times faster for key-value workloads, while taking up less
space for caching indexes and filters, and exhibiting better
tail latency in read operations, relative to key-value stores
using a general-purpose LSM-tree implementation including
LevelDB and RocksDB.

2. BACKGROUND AND MOTIVATION
This section discusses the basics of the LSM-tree and its

variants, as well as opportunities for further improvement.

2.1 LSM-Tree and LevelDB Implementation
An LSM-tree contains multiple append-only sorted tables,

each of which is created by sequential writes, and often im-
plemented as SSTables [7, 20]. As shown in Figure 1, these
SSTables are organized into multiple levels based on the time
when entries are inserted, that is, if ki is a key found in level
i matches kj , (j > i), then ki was written after kj .

The LSM-tree exploits the relatively fast sequential write
speed of modern storage devices. On hard disk and flash
drives, sequential writes are an order of magnitude faster
than random writes. By using an in-memory buffer and
multi-level structure, the LSM-tree stages and transforms
random writes into sequential I/O. A new entry is first in-
serted into the in-memory buffer (and is also logged to the
disk for crash recovery). When the buffer limit is reached,
the entry and other changes cached in the buffer are spilled
into the disk to generate a SSTable in Level 0. The new
entry is then migrated over time from Level i to Level i+ 1
by a merge process called “compaction”.

Level 0!

Level 1!

Level 2!

Compaction!
Lookup!

….!

….!

Figure 1: Illustration of the level structure of LSM-tree and its
compaction procedure. Each block denotes an SSTable file.

The total size of each level follows an exponential growth
pattern such that the size of Level i is r times larger than
the size of Level i − 1. Common values of r are between 8
and 16. With this exponential pattern, there are at most
O(logrN) levels, where N is the total number of unique
keys. To search for an entry, the LSM-tree has to search
multiple levels because the entry can exist in any of these
levels. In practice, searching for an entry within an un-
cachable large level usually requires two random disk I/Os
to fetch the SSTable’s index and the block that contains
the entry. Thus the worst-case lookup incurs O(logrN) ran-
dom I/O by accessing all levels. Modern implementations of
LSM-trees usually use in-memory Bloom filters [5] to avoid
unnecessary searching in some levels.

The compaction strategies that move data between levels
are based upon certain criteria. In an LSM-tree, if the size
limit of a level is reached, data in this level will be compacted
into the next level by merge-sorting SSTables from the two
levels. In the worst case, the key range of Level i overlaps
the entire key range of Level i + 1, which requires merge-
sorting all of the SSTables in both levels. Since Level i + 1
has r times more data than Level i on average, migrating
an entry requires reading and writing r times more data
than itself. Thus, the write amplification per insertion is
O(rlogrN). Since entries are transferred in batches (of size
B) during compaction, the amortized I/O cost per insertion
is O( 1

B
rlogrN) in the worst case.

2.2 The Stepped-Merge Algorithm
Stepped-Merge is an LSM variant that uses a different

organization and compaction strategy to manage SSTables
[19]. The main purpose of compaction is to make room for
recently inserted entries by integrating SSTables from Level
i to Level i + 1. The major source of write amplification
comes from the fact that the compaction procedure has to
merge-sort at least one SSTable in level i with all of the over-
lapping SSTables in the next level, amplifing the compaction
overhead.

Based on this observation, as shown in Figure 2, Stepped-
Merge divides the SSTables in each level into r sub-levels.
The size limit of each level is still the same as the LSM-tree.
However, when compacting SSTables in Level i, Stepped-
Merge does not merge-sort SSTables in Level i with tables
in Level i+1 as the LSM-tree does. Instead, all sub-levels in

Level l

Level l+1 ….

SSTables to Compact
….r sub-levels

Level l

Level l+1 ….

Compaction

Figure 2: Illustration of Stepped-Merge algorithm.
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Level i are r-way merge-sorted and inserted into Level i+ 1
as a new sub-level. The total amount of transferred data
during merge-sorting r sub-levels is roughly the same as the
total amount of data stored in these sub-levels. By doing
so, the amortized cost of migrating an entry from Level i to
Level i+ 1 is reduced to only two times its size. Since each
long-lived, inserted entry is written at each level only once,
the write amplification for an entry to reach level i + 1 is
i. Thus, the amortized I/O cost of an insertion in Stepped-
Merge decreases to O( 1

B
logrN).

On the other hand, a lookup operation in Stepped-Merge
has to check rlogrN sub-levels to locate a key, which costs
O(rlogrN) random reads from disk in the worst case.

2.3 Optimizing Indexes and Filters
Although the stepped-merge algorithm can reduce write

amplification, its read performance degrades because the al-
gorithm has multiple overlapping sub-levels within each level
for a lookup operation to read in order to find a partic-
ular entry. To avoid high read latency while maintaining
low write amplification, one potential solution is to increase
the effectiveness of a store’s in-memory indexes and filters.
These enhanced in-memory data structures can better pin-
point where entries might and will not be, and therefore can
avoid unnecessary disk accesses.

0
0
0
1

0
1
0
0

…
0
1
1
0

1
0
1
0

… ……

Block index

0
1
0
0

1
0
1
0

1
1
0
0

…

 0  1 N-1
1
1
0
0

1
1
1
1

…

No 
Get 0001 Get 0101 

Yes 
Bloom  
filter SSTable

Figure 3: Illustration of the basic index format of LevelDB’s
SSTable and its read path. The keys follow a semi-sorted order,
so each key has two parts: the prefix (red) and the suffix (black).

Figure 3 shows the main components of a typical LevelDB
SSTable, which is the format used by LevelDB to store data.
Each SSTable stores its data in sorted order across an array
of data blocks. The size of each data block is configurable
and is usually 4KB. In addition to these data blocks, a spe-
cial index block is created that maps each key range to its
data block. This index block consists of all the largest keys
of every data block. Along with this index block, a Bloom
filter is also used to record the existence of all the keys in the
table [5]. For each lookup operation, LevelDB first checks
the Bloom filter to ascertain the non-existence of a key, else
it uses the index block to find the right data block. In Figure
3, for example, to lookup key “0001” the lookup process will
first go through the Bloom filter and will find that the key
may be in the SSTable. It then checks the corresponding
index block, which will lead the lookup to data block 0. To
lookup key “0101”, the lookup process will be stopped by
the Bloom filter as key “0101” was never inserted into this
example table.

Since the Bloom filter is a probabilistic data structure
with a false positive rate, a lookup operation may fetch a
data block that does not contain the target key, thus adding
additional read latency. On the other hand, all SSTable in-
dexes and filters in many key-value stores are often stored in

memory in a LRU cache with a fixed memory limit. Mak-
ing high quality indexes and filters more compact will al-
low more entries can be precisely indexed and avoid loading
block indexes and filters from the disk. Because the quality
and the size of block indexes and filters are key to ensur-
ing good read performance, we will show in the following
sections how to improve indexes and filters by leveraging
common key-value workload characteristics.

3. DESIGN AND IMPLEMENTATION
The following summarizes the characteristics of the in-

dexes and filters used in SlimDB:

• Three-level Block Index : Our three-level block index
replaces the original block index used in LevelDB’s
SSTable. This new index is specially optimized for
semi-sorted data. It features a memory cost that is as
small as 0.7 bits per key.

• Multi-level Cuckoo Filter : The multi-level cuckoo filter
is a replacement of Bloom filters for the stepped-merge
algorithm. When searching for a key using a multi-
level cuckoo filter, the filter returns the most recent
sub-level containing the target key if the key appears to
exist. Similar to Bloom filters, the multi-level cuckoo
filter is a probabilistic data structure which may give
the wrong answer if the key does not exist. But even
in the worst case, the lookup procedure will only need
to access a SSTable in one sub-level in a workload with
only blind writes.

Combining different data layouts and indexes gives rise to
key-value stores with different read, write amplification, and
memory costs. For example, we can combine a multi-level
cuckoo filter with a stepped-merge algorithm. Together they
can have lower write amplification than an original LSM-tree
but may require more memory resources. There is no one
combination that is strictly better than all other combina-
tions. However, the multi-level structure used by many log-
structured store designs allows for a flexible use of different
key-value store combinations at each level [24]. As we shall
show, these multi-level stores are able to leverage a mix of
key-value store designs to balance read amplification, write
amplification, and memory usage. Figure 4 gives an exam-
ple of the multi-store design in SlimDB. Levels 0, 1 and 2
all use the data layout of the stepped-merge algorithm, with
multi-level cuckoo filters and three-level block indexes. All
filters and indexes are cached in memory. Level 3 and Level
4 use the data layout of the original LSM-tree, and cache
three-level block indexes in memory. Further, Level 3 but
not Level 4 caches Bloom filters in memory.

L0 

L3 …. 

…. 
Cuckoo Filter 

Multi-level Cuckoo Filter 

Three-level 
Block Index 

…. 

…. L4 

Figure 4: The use of multi-store design in SlimDB. Filters and
indexes are generally in-memory, and for a large store SSTables
are mostly on disk.
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The following sections explains our novel indexes and fil-
ters. Section 4 will show how to use our proposed analytic
model to automatically select basic key-value store designs
for each level to meet resource and performance constraints.

3.1 Space-efficiency of an SSTable Index
In LevelDB’s original SSTable format, key-value pairs are

sorted and packed into data blocks. As shown in Figure
3, each SSTable file contains an index block at the end of
the file that stores the full key of each data block’s last
entry. Without caching the block index, reading an entry
from an SSTable requires two block reads: one to load the
index block and the other to read the actual entry. Since the
size of an SSTable data block is usually set to 4KB and the
typical size of an entry in many applications (e.g, file system
metadata, feature storage in recommendation system) might
be smaller than 256 bytes [24], each block stores, say, at
most 16 entries. As LevelDB’s block index stores a full key
(e.g. 16B) for each data block, the average space required
to store a key might be 16B / 16 = 8 bits. The block index
representation can be replaced without changing the general
LSM organization and execution. Our goal is to to apply
sophisticated compression schemes on the block index to
trade more CPU cycles for fewer storage accesses through
higher cache hit rates when fetching a random entry from
an on-disk SSTable.

Different from LevelDB, which is designed for totally or-
dered keys, SlimDB only needs to support semi-sorted keys
that consist of a prefix and a suffix. This means that the
keys in a SlimDB SSTable only need to be sorted by their
prefixes. This enables us to use entropy-coded tries (ECT)
[24] to compress prefixes and suffixes separately in the index
block. ECT can efficiently index a sorted list of fixed-sized
hash keys using only 2.5 bits per entry on average. In this
section, we construct a semi-sorted block index with ECT
to use only 1.9 bits to index an entry to its block, which is
4X smaller than the LevelDB method.

Entropy-Encoded Trie Basics: Given an array of n
distinct keys that are sorted by their hash order, an ECT
data structure is able to map each input key to its rank
(∈ [0, n− 1]) in the array. As shown in Figure 5, each ECT
is a radix tree that stores a set of keys where each leaf node
represents one key in the set and each internal node denotes
the longest common prefix shared by the keys under the
subtree rooted by this internal node. For each key stored,
ECT only preserves the shortest partial key prefix that is
sufficient to differentiate it from other keys. Although ECT
can index a set of keys, it cannot check key membership,
so additional data structures (such as bloom filters) are still
needed to avoid false lookups.

Because all keys are hashed, ensuring a uniform distri-
bution, a combination of Huffman coding and Elias-gamma
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Trie 
(ECT)

0 1

00

0 1

1 1

Figure 5: ECT transforms a list of sorted key hashes into a
radix tree that only keeps the shortest prefix of each key that is
enough to distinguish it from other keys.
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Figure 6: An example three-level block index for an SSTable.

coding is able to greatly compress the keys in each trie. De-
tails of how to compress the trie are described in [24].

Three-Level Index Design: Unlike hash tables, in
order to retain the semi-ordering of keys, using ECT alone
is not sufficient to serve as a block index for SlimDB. In
SlimDB both key fragments are hashed, so it is possible to
use ECT to index each key fragment individually, leading to
a two-step search procedure: first find a group of SSTable
blocks that contain all keys sharing the same prefix as the
sought key; then locate the specific block having the sought
key from the group of blocks returned by the first step.

As shown in the example in Figure 6, the construction of
three-level index is based on compressing the vanilla block
index that stores the first and the last keys of all the data
blocks. First, the prefix of these block keys are stored sep-
arately in a prefix array, where only one prefix is preserved
and duplicated prefixes are removed. We use ECT to com-
press this prefix array, which constitutes the first level of our
index. This level allows us to map each key, using its prefix,
to its rank in the prefix array, and this rank in turn becomes
the input to the second level of our three-level index, which
we now describe.

The second level of our three-level index takes the rank
in the prefix array and maps it to one or more SSTable
data blocks that contain entries matching this specific prefix
key. In this integer array each element stores the offset in
the vanilla block index of the last block key containing the
corresponding prefix in the prefix array. For example, the
last block containing “001” is Block 2, and its offset in the
vallina block index is 4. Therefore its corresponding element
in the second level is 4.

Through the mappings defined by the first two levels,
a lookup procedure is able to retrieve a list of potential
SSTable blocks that contain the sought key’s prefix. To fi-
nally locate the SSTable block whose range covers the sought
key, the last step is to binary search through all potential
SSTable blocks using the suffix of the last entry from each
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block. Similar to the first level index, the array of suffixes
of block keys sharing the same prefix can be compressed by
using ECT.

To optionally speed up the lookup process without us-
ing ECT, our three-level index can store an array of partial
suffixes instead: each partial suffix is the shortest unique
prefix of the original suffix that distinguishes a pair of suf-
fixes from the two adjacent SSTable blocks. For example,
when searching for the key “001000”, we find it must reside
between Block 0 to Block 2 inclusive, based on the first two
level indexes, as shown in Figure 6. To locate its block, we
use its suffix “000” to complete a binary search among the
array of suffixes (“010”, “110”) that differentiate the three
candidate block groups. Since “000” is smaller than “010”,
“001000” can only be stored in Block 0.

Analysis of Three-Level SSTable Index: For the first
level, the prefix array needs to store at most two prefixes per
SSTable block, and all prefixes are hash sorted which can be
used for ECT encoding. Since ECT costs 2.5 bits per prefix
key on average, the first level costs no more than 2×2.5 = 5
bits per SSTable block.

For the second-level index that records, the last block’s
offset per prefix, we can represent it with a rank/select dic-
tionry[18]. It first uses delta encoding to calculate the dif-
ference between two offsets. Because the sum of these deltas
cannot exceed the number of blocks in the SSTable, we can
then use unary coding to represent the delta as a bit vec-
tor, with no more than two bits per block in an SSTable.
Optionally, to speed up searching in this array, a sum and
pointer enables quick skipping one set of k deltas, this can
be added to the bit vector for every k deltas. If the size of
the sum and a pointer is 16 bits and k = 32, then building
this array costs 2 + 16/k = 2.5 bits per group.

The third-level index that records per-block last suffixes
costs 2.5 bits per block on average if using ECT. If using an
array of partial suffixes instead of ECT, Monte carlo simu-
lation of all possible arrays of partial keys shows that the
average length of the partial key that separates two adjacent
suffixes is about 16 bits. Another 6 bits is used to record the
length of each partial key. So the average cost of the faster
lookup third-level index is 22 bits per block (using the array
of partial keys).

Summing the average-case cost of all three index levels,
the three-level SSTable consumes 10 (5 + 2.5 + 2.5) bits per
SSTable block using ECT on the third-level index. Using 16
key-value items per block, memory overhead is 10/16 = 0.7
bits per key, much smaller than LevelDB’s 8 bits per key. If
using the array of partial keys for faster lookup in third-level
index, the memory overhead is (5 + 2.5 + 22)/16 = 1.9 bits
per key (still 4X better than LevelDB).

3.2 Multi-Level Cuckoo Filter
In-memory filters are data structures commonly used by

many high performance key-value stores to efficiently test
whether a given key is not found in the store before ac-
cessing the disk. Most of these filters are probablistic data
structures that perform false positive accesses. One main
source of long tail latency in the read path of a stepped-
merge store lies in false positive answers given by Bloom
filters at multiple levels when looking for a key. We propose
a new filter design, called a multi-level cuckoo filter, that can
limit the number of disk reads in such cases. This new filter
design uses the cuckoo filter as a building block. Cuckoo

filters are similar to Bloom filters but have properties like
lower memory cost and fingerprint-based filtering [14]. This
section introduces how the design of our multi-level cuckoo
filter improves the read tail latency of key-value stores by
leveraging these properties.

Cuckoo Filter Basics: A cuckoo filter extends standard
cuckoo hash tables [27] to provide membership information.
As shown in Figure 7, a cuckoo hash table is a linear array
of key buckets where each key has two candidate buckets
calculated by two independent hash functions. When look-
ing up a key, the procedure checks both candidate buckets
to see if the entry exists. An entry can be inserted into any
one of two candidate buckets that is vacant. If both are full,
then the procedure displaces one existing entry in either
bucket and re-inserts the victim to its alternative bucket.
The displacement procedure repeats until a vacant bucket is
found or the maximum number of displacements is reached
(e.g, hundreds of tries). In the latter case, the hash table
is declared to be full, and an expansion process is executed.
Although cuckoo hashing may execute a series of displace-
ments, the amortized I/O cost of insertion operation is O(1).

b f d
0         1         2         3          4          5 

Insert x

h1(x) h2(x)

Figure 7: Illustration of Cuckoo Hashing.

Cuckoo hashing can achieve higher space occupancy by
using more hash functions as well as extending the buckets
to have more than one slot to allow several entries to co-
exist. Nikolaos et. al. present an analysis of the maximum
possible occupancy ratio, showing that with 2 hash functions
and a bucket of size 4, the table space can be 95% filled [16].

Cuckoo hashing can be used directly to implement a mem-
bership query. But since the hash table stores the full key,
it has high space overhead compared to a Bloom filter. To
save space, a cuckoo filter [14] only stores a constant-sized
hash fingerprint of any inserted entry instead of its original
full key. This results in changes to the insertion procedure.
Storing only fingerprints in the hash table prevents inserting
entries using the standard cuckoo hashing approach, since it
prevents the algorithm from calculating the entry’s alterna-
tive position. To overcome this limitation, the cuckoo filter
uses the fingerprint to calculate an entry’s alternative bucket
rather than the key itself. For example, the cuckoo hash in-
dexes of the two candidate buckets of an entry x (h1(x) and
h2(x)) are calculated as follows:

h1(x) = hash(x),

h2(x) = h1(x)⊕ hash(x’s fingerprint)

Obviously, the two functions are symetric since h1(x) =
h2(x) ⊕ hash(x’s fingerprint). This design causes the two
hash functions to be less independent of each other, therefore
the collision rate in the hash table is higher than that of the
standard cuckoo hashing table. However, by selecting an
approriate fingerprint size f and bucket size b, it can be
shown that the cuckoo filter is more space-efficient than the
Bloom filter when the target false postive rate is smaller
than 3% [14].
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x1 
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Figure 8: Illustration of integrating cuckoo filters with multi-
level indexes and a secondary table. If a key has a hash collision
with some key in the primary hashing table, the key will be put
into the secondary hashing table. Each lookup first checks in the
secondary table and then the primary table.

Integration with Multi-level Stores: Figure 8 de-
picts the integration of a multi-level cuckoo filter with multi-
level key-value stores. The multi-level cuckoo filter has two
separate tables: the primary table and the secondary table.
The primary table is a cuckoo filter variant that stores both
the fingerprint, f(x), and the level number of each entry,
l(x). Different from the basic cuckoo filter, the level number
stored in the primary table can be used to locate the sub-
level in the LSM-tree in which the target entry is actually
present.

The secondary table is used to bound tail latency by stor-
ing special entries with their full keys. The reason for having
the secondary table is to cope with the case that multiple
entries may have the same fingerprint. In such cases, the
primary table would need to keep multiple copies of the
same fingerprint with all the associated level numbers. To
locate the level that actually contains the sought entry, it
would be necessary to perform a disk read for each level as-
sociated with the conflicting fingerprint in the worst case. A
straightfoward method to reduce the number of disk reads in
the worst case is to avoid fingerprint conflicts in the primary
table, which means that each fingerprint must be unique and
can only be associated with one level number in the primary
table. To maintain this property, the multi-level cuckoo fil-
ter uses the secondary table to record the full key for each
entry, after the first, having a conflicting fingerprint in the
primary table.

With a secondary table for conflicting entries, the proce-
dure of looking up an entry in multi-level cuckoo filter is still
straightforward, as shown in Algorithm 1. When searching
for an entry, first search the secondary table to see if there
is any matching full key. If found, the level number of this
entry can be retrieved from the secondary table; otherwise,
continue to check the primary table of the multi-level cuckoo
filter. With the secondary table in memory, the worst case
lookup performs at most one disk read since it is guaranteed
that there is only one copy of each fingerprint in the primary
table.

To maintain uniqueness of fingerprints in the primary ta-
ble, the insertion procedure in multi-level cuckoo filters must
follow certain rules as shown in Algorithm 2. The multi-level
cuckoo filter is built along with the multi-level stores, mean-
ing that newer entries are always inserted into newer (lower)
levels. When inserting an entry, if its fingerprint already ex-
ists, then we check whether the fingerprint in the primary
table is derived from the same key. If it is derived from the
same key, then the entry must have a newer level number,
and therefore we only update the level number associated

with the key in the primary table. Otherwise, the entry is
put into the secondary table due to the conflict of the fin-
gerprint. If the fingerprint does not exist, then the entry
can be safely inserted into the primary table. For example,
as shown in Figure 8, when inserting x4, it might happen
that x4’s fingerprint is the same as x1’s. Thus, x4 has to be
put into the secondary table. However, if we insert x1 with
level 0 that is newer than level 2, then only its level number
in the primary table needs to be updated.

Algorithm 1: lookup(key x)

Data: c: primary table; t: secondary table
l = t.lookup(x)
if l is not NULL then

return l
else

f = fingerprint(x)
return c.lookup(f)

end

Algorithm 2: insert(key x, level l)

Data: c: primary table; t: secondary table; store:
on-disk store

f = fingerprint(x)
l′ = c.lookup(f)
if l′ is not NULL then

if store has no x in level l′ then
t.insert(x, l)
return

end

end
c.insert(f , l)

To verify whether the conflicting fingerprint comes from
the same key in the primary table, it is not necessary to
perform disk reads to retrieve the full key if writes are non-
blind. Our strategy then is to take advantage of non-blind
writes to avoid unnecessary disk traffic when possible. For
example, in file system metadata workloads under the POSIX
standard, all metadata write operations are non-blind, which
means that a read operation will have always been per-
formed on a key before any write of that key. The exis-
tence check operation done by prior read avoids additional
disk reads needed for the multi-level cuckoo filter to verify
whether the same key exists in other levels.

If blind writes do happen in the workload, the same key
can be inserted into both the primary and secondary table if
the insertion procedure does not read the full key from the
disk. In this case, however, the number of keys stored in the
secondary table will exceed reasonable space targets, so our
algorithm will stop inserting new entries into the secondary
table, and the multi-level cuckoo filter will exhibit similar
false positives and tail latency distribution as the original
Bloom filters.

Memory Footprint Analysis: While it might seem
that the multi-level cuckoo filter may use log2(L), L ≈ log(N)
more bits per entry compared to the traditional Bloom fil-
ters used in LevelDB, the primary table of the multi-level
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cuckoo filter actually has the same memory cost even in the
worst case. To see why, assume the desired false positive rate
for the multi-level cuckoo filter is ε. For traditional meth-
ods [20] that use a Bloom filter for each SSTable, the overall
false positive rate is at least 1− (1−α)L ≈ L ·α if the false
positive rate in each level is α and they are independently
distributed. In order to achieve the same false positive rate
as the multi-level cuckoo filter, a Bloom filter’s α must be
ε/L. The space requirement for any Bloom filter to achieve
a false positive rate α is at least log2 1/α. So the overall cost
of the traditional method is log2(1/α) = log2(1/ε) + log2(L)
per entry, which is the same as the multi-level cuckoo filter.

The average size of the secondary table is proportional
to the false positive rate of the primary table. To see why,
assume that there are n elements that need to be inserted
into the primary filter, and the primary filter has a false
positive rate ε. The expected number of entries stored in
the secondary table is the expected number of entries that
generate false positive anwers, which is n× ε.

SlimDB uses a multi-level cuckoo filter with a less than
0.1% false positive rate. The size of each item stored in
the secondary table is the sum of the length of the full key
and the size of the level number which is 128 + 8 = 136
bits. The secondary table increases the memory overhead by
136× 0.1% = 0.136 bit per entry, which is 0.136/16 = 0.8%
of the original Bloom filter’s cost.

3.3 Implementation
The implementation of SlimDB is based on RocksDB [29],

and has about 5000 lines of code changes. RocksDB has a
modular architecture where each component of the system
exports the same, basic key-value interface including the
memory-index and on-disk SSTable. This allows us to eas-
ily add a new filter policy and block index into its SSTables.
In SlimDB, items are sorted according to their hashed pre-
fix and suffix. Thus, point queries do not require additonal
changes to RocksDB other than in the filters and block in-
dexes. For prefix scan (e.g. list all entries sharing the same
prefix) with stepped-merge algorithms, SlimDB has to main-
tain an SSTable iterator in each sub-level, which is slower
than a traditional LevelDB. Since items are sorted by hashed
prefix, SlimDB cannot support scan across prefixes with one
index. To support fully ordered key scans in such a work-
load, SlimDB could maintain another secondary index that
stores all the prefixes without hashing [25].

The use of the stepped-merge algorithm in SlimDB is sim-
ilar to the procedure described in LSM-trie [33]. In each sub-
level, semi-sorted items are grouped into SSTables based on
their hash-key range as well as the size limit of each SSTable.
During each compaction, the procedure will pick all SSTa-
bles within a hash-key range from all sub-levels to do merge-
sorting and put newly merged SSTables into the next level.

4. ANALYTIC MODEL FOR SELECTING
INDEXES AND FILTERS

The level structure of an LSM-tree allows for flexible use
of different storage layouts and in-memory indexes on a per-
level basis. This section presents an analytic model that
selects storage layout and in-memory indexes to achieve low
memory usage while maintaining target performance.

The key idea of the analytic model is to account for the
hardware resources utilized by the index structure in each

Table 1: The space and disk access cost of using three types of
indexes. CF means Cuckoo Filter. TL means three-level SSTable
index. MLCF means multi-level cuckoo filter.

# Level Mem. Pos. Neg. Writes
structure CM CPR CNR CW

0 LSM-Tree 0b 2 2 rw
B

1 LSM+CF 13b 2 2f rw
B

2 LSM+CF+TL 15b 1 f rw
B

3 LSM+TL 2b 1 1 rw
B

4 Stepped-Merge 0b r + 1 2r w
B

5 SM+MLCF 15b 2 2f w
B

6 SM+MLCF+TL 17b 1 f w
B

7 SM+TL 2b r+1
2

r w
B

level, including the memory cost and the I/O cost of all types
of requests (such as positive reads, negative reads, and in-
sertions). To unify I/O costs of different types of requests,
we use the time spent on a random 4KB disk read as the ba-
sic measurement unit. For most storage devices, the cost of
writing a 4KB block sequentially compared to random block
read (denoted as w) is actually quite small. For example, the
solid state disk used in our evaluation performs 4000 4KB
random reads per second, and delivers 107 MB/sec sequen-
tial writes. The I/O time to write a 4KB block sequentially
is 4/107/1024 ≈ 0.0000365 seconds. The I/O time of reading
a 4KB block randomly is roughly 1/4000 ≈ 0.00025 seconds.
In such cases, w equals 0.146. If a 4KB block can store B
entries, then the cost of inserting an entry is w/B because
insertion and compaction in the log-structure design only
require sequential writes.

Table 1 summarizes the costs of using different combina-
tions of indexes and data layout on a per-level basis. For
simplicity, our model assumes that all the SSTables within
a level use the same types of index and filter, and that key
queries follow a uniform distribution. For each level, if that
level follows the design of an LSM-tree and has only one
sub-level, then it is labeled as an LSM-tree style data lay-
out. Otherwise, for any level having multiple sub-levels, it is
labeled as a Stepped-Merge (SM) style data layout. Without
any in-memory indexes, the costs of the two styles are cal-
culated as in Section 2. When equipped with only a cuckoo
filter or a multi-level cuckoo filter, the cost of a negative read
(a read that does not find the sought key) is 2f , where f is
the false-positive rate of the filter. By caching a three-level
SSTable index additionally, the average cost of retrieving an
entry is reduced to f .

Once there is a cost model, then the index selection prob-
lem becomes an optimization problem whose goal is to mini-
mize the I/O cost under memory constraints. Assume there
are l + 1 levels, and the number of entries in level i is Ni.
With N0 and the growth factor r as input parameters, the
size of each level can be calculated as Ni = N0 ·ri. The total
number of entries in the store is N =

∑
Ni. The type of

index used by level i is denoted as ti. For the index of type
ti, its memory cost in bits per entry is denoted as CM [ti].
CPR[ti], CNR[ti], and CW [ti] denote the cost of a positive
read, the cost of a negative read and the cost of write in
disk access per operation. We also assume that the ratio of
different operations in the workload are known beforehand:
the ratio of positive reads, negative reads, and writes in the
workload are rPR, rNR, and rW , respectively. By choos-
ing different types of indexes for each level, the goal is to
meet a memory constraint and reduce the overall I/O cost.
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The overall average cost for each type of operations can be
summarized as below:

SPR =
∑

0≤i<l

Ni
N
× (CPR[ti] +

∑
0≤j<i

CNR[tj ]),

SNR =
∑

0≤i<l

CNR[ti], SW =
∑

0≤i<l

Ni
N
×

∑
0≤j≤i

CW [tj ]

Therefore, the average I/O cost of a random operation
within a particular workload is:

C = rPR × SPR + rNR × SNR + rW × SW

With a memory budget of M bytes, the constraints for this
optimization problem are:∑

Ni ∗ CM [ti] ≤M, 0 ≤ ti ≤ 7

By using a heuristic search, the optimal value can be easily
found for the above optimization problem.

Figure 9 shows the average cost of a key-value operation
under different file system metadata workloads and memory
constraints. In this figure, l = 5, r = 8, and N0 = 217. So
the key-value store has about a half billion entries in total.
The figure shows four file system metadata workloads as an
example: file creation in an empty file system (creation), up-
dating inode attributes (update), querying inode attributes
(stat), and a mix of reads and writes (mix). The ratio of key-
value operations is calculated by designating file metadata
operations into read and write operations. For example,
since the creation workload creates files from an empty file
system, all existence checks are negative reads, which means
that rNR = 0.5 and rW = 0.5. From Figure 9, we can see
that the average cost gradually decreases as the memory
budget increases. For a creation workload, when the mem-
ory budget allows the key-value store to cache a filter at
each level, the creation cost reaches the lowest point. For
other workloads dominated by positive reads, one disk read
is the lower bound. When the memory budget is between
256MB and 900MB, the four workloads use the same layout:
the first three levels use a stepped-merge layout, three-level
SSTable indexes and multi-level cuckoo filters; level 3 has
only one sub-level with a three-level index and cuckoo filter;
and level 4 has one sub-level with only the three-level index.
The multi-store layout is illustrated in Figure 4. Travers-
ing down the level hierarchy, the memory cost of the index
decreases from the multi-level cuckoo filter to only caching
block index.
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Figure 9: The per-operation cost estimated by the model.

5. EVAULATION
Using macro and micro-benchmarks, we evaluate SlimDB’s

overall performance and explore how its system design and
algorithms contribute to meeting its goals. We specifically
examine (1) the performance of SlimDB’s in-memory in-
dexing data structures in isolation; and (2) an end-to-end
evaluation of SlimDB’s throughput, memory overhead, and
latency.

5.1 Evaluation System
All our experiments are evaluated on a Linux desktop con-

figured as is listed in Table 2.

Table 2: Hardware configuration for experiments.

Linux Ubuntu 12.10, Kernel 3.5.0 64-bit
CPU Intel Core 2 Quad Proc. Q9550
DRAM 8GB DDR SDRAM
SSD 128GB Intel 520 Solid State Drive

Random (op/s): 4K (R), 2.5K (W)
Sequential (MB/s): 245 (R), 107 (W)

We compare the performance of SlimDB against two pop-
ular LSM tree variants: LevelDB (version 1.6) [20] and its
fork RocksDB (version 4.11) [29]. All key-value stores are
configured to use filters at 16 bytes per key. The growth
factor for all key-value stores is 8, the size limit for Level-0
is 20 SSTables, and the size of each SSTable is 32MB. In
all benchmarks, we use a 16-byte key and a 256-byte value.
Each key has two fragments, each fragment is a 64-bit value,
and all workloads meet the semi-sorted requirement.

5.2 Microbechmark on SSTable Indexes
This section demonstrates the effectiveness of compact-

ing the index for each SSTable. The experiments compare
LevelDB’s original SSTable index against our three-level in-
dex. Analysis of the experiments results focuses on two main
metrics: the memory cost and lookup latency per key. It is
expected that the enhanced three-level index uses less mem-
ory but incurs additional CPU costs for decompression.

Experiment Design: In the first experiment, an empty
SSTable is first filled according to given key distribution
for each case; the second stage of this experiment opens
this newly-created SSTable, loads its index block into the
memory to obtain its memory consumption, then generates
1 million random queries to measure average lookup latency.
In the experiment, each SSTable only consists of a list of
data blocks and a single index block excluding other types
of blocks holding information such as bloom filters.

In all experiments, an SSTable has a fixed size of 32MB
and each data block has a size of 4KB. All inserted key-
value entries have a fixed size of 256 bytes. With table
formatting and key prefix compression provided by original
LevelDB, SSTables generated in the experiments (with or
without compact index) have 148639 entries and 8744 data
blocks, with each block on average holding approximately
17 entries. Four different prefix group size distribution pat-
terns are used to evaluate the index: each prefix group has
either fixed 16, 32, or 64 entries sharing the same prefix,
or has a Zipfian distributed prefix group size with a maxi-
mum of 8000 entries. According to the experimental results,
these different patterns generated 9290, 4645, 2323, and 26
distinct prefix groups within a single SSTable, respectively.

2044



Memory Consumption: Table 3 shows the experimen-
tal results in terms of memory consumption between SlimDB
and LevelDB. LevelDB’s default indexing mechanism is built
upon a sorted array of the last keys of each data blocks. Ex-
periments show that this mechanism can take up to almost
18 bits per key in order to store the entire index in the mem-
ory. However, if key compression is applied to LevelDB —
which means storing only the unique key prefix that can
distinguish the last key of a data block from the first key
of the next data block, instead of storing the entire key —
LevelDB’s memory consumption can be reduced from 18 to
about 10.5 bits per key. LevelDB also assumes that each
data block has a variable and unpredictable size. So in the
indexing structure, LevelDB stores the offset and length of
each data block in order to later locate and read those data
blocks. In SlimDB design, all data blocks have a fixed size,
which allows it to skip storing block locations within the
index. With this assumption, LevelDB’s memory consump-
tion can be reduced from 10.5 to about 8 bits per key, which
we see as the best memory usage that can be achieved from
an LevelDB style array-based indexing mechanism. In con-
trast, SlimDB’s compact three-level indexing only requires
1.5 to 2.5 bits per key to represent the entire index, which
is as little as 8% to 14% of the memory space needed by
LevelDB out of the box. Another observation from Table 3
is that the memory savings depend on workload patterns.
SSTables with a lot of small prefix groups require relatively
larger memory footprints compared to SSTables storing only
a few large prefix groups. This is because a larger set of dis-
tinct prefix groups leads to a larger prefix ECT structure is
used as the first level of the three-level index.

Table 3: The memory consumption of different SSTable indexes
measured as bits per key, for various patterns of prefix groups (3
fixed sized and a Zipfian distribution)

Fix.16 Fix.32 Fix.64 Zipf

SlimDB 2.56 1.94 1.57 1.56
LDB FixedBlock 7.58 7.82 8.18 8.43
LDB KeyCompress. 10.37 10.61 10.98 11.23
LDB Default 17.39 17.39 17.39 17.39

Lookup Performance: Table 4 shows the experimen-
tal results in terms of in-memory lookup throughput against
these indexes. As can be seen from the table, the three-level
indexing mechanism has a longer lookup time, about 5 to
7 times slower than the original LevelDB index. This is
because our more compact indexing requires a more sophis-
ticated search algorithm to complete each query. A closer
analysis found that decoding the first-level index consumes
70% of the CPU cycles for fixed prefix group sized workloads.
For Zipfian-prefix-group size workloads, decoding the third-
level index occupies 60% of the CPU cycles. The three-level
index trades greater CPU cost for saving memory space,
which is worthwhile when the gap between CPU resources
and memory resources is large.

Table 4: Average SSTable index lookup speed for SlimDB and
the original LevelDB in thousands of lookups per second.

Fix.16 Fix.32 Fix.64 Zipf

SlimDB (Kops/s) 147.5 143.6 149.5 288.5
LevelDB (Kops/s) 1042.7 1019.4 1016.3 1046.0

5.3 Microbenchmark on Filters
While the high throughput of flash disks often limits the

CPU budget available for in-memory indexing, this section
demonstrates the computation efficiency of our multi-level
cuckoo filters. The multi-level cuckoo filter is compared
against traditional ways of using cuckoo filters in LevelDB
and other key-value stores. In this section, the multi-level
cuckoo filter is denoted as “MLCF”, and the cuckoo filter is
denoted as “CF”.

Experiment Design: We focused on the bulk insertion
and lookup speed of multi-level cuckoo filters. All experi-
ments are single-threaded programs.

The benchmark builds a filter for an 8-sub-level key-value
store. Each sub-level has 10M random 16-byte keys. This
micro-benchmark involves only in-memory accesses (no flash
I/O). Keys are pre-generated, sorted, and passed to our fil-
ters. There is also a parameter d called “duplication ratio”
that controls the ratio of duplicated keys at each level. If
d = 10%, this means that for any level i (0 ≤ i < 7), 10%
of the keys are selected from the first 10% of keys in level 8,
and the other 80% of keys are distinct from all other keys in
the key-value store. Later, we show the impact of this ratio
of duplicated keys on the performance of in-memory filters.

To measure lookup performance, we use both true-positive
queries and false-positive queries. For true-positive queries,
the benchmark issues 80M random requests on positive keys,
meaning that the keys are present in the key-value store.
For false-positive queries, the benchmark issues 80M random
requests on negative (not present) keys.

Space Efficiency and Achieved False Positive Rate:
In this experiment, CF is configured to use a 16-bit hash fin-
gerprint. MLCF uses a 14-bit hash fingerprint and a 3-bit
value field to index the level number. Table 5 shows the
actual memory cost per key and the achieved false positive
rate for these configurations. The actual memory cost in-
cludes the space inflation caused by a less than 100% load
factor for the cuckoo hashing table, as well as such as the
secondary table used by MLCF. By comparing the memory
cost of MLCF and CF, the memory overhead introduced by
the secondary table is negligible because the false positive
rate is low.

Table 5: RAM usage and false positive rate of different filters.

CF MLCF

RAM Cost (bits/key) 16.78 16.67
False Positive Rate 0.001 0.002

Insert Performance: Table 6 shows the bulk insertion
performance of different filter implementations under differ-
ent duplication ratios. CF is faster than MLCF in all cases.
This is because MLCF has to check whether an entry has
already been inserted into other levels when inserting a new
entry. When the duplication ratio becomes large, the av-
erage insertion throughput of MLCF becomes higher. The
insertion speed of Cuckoo hash tables is higher when its ta-
ble occupancy is lower. Since MLCF only uses a single table
to store all entries, a high duplication ratio leads to low table
occupancy.

Lookup Performance: Figure 10 shows the lookup
performance of different filter implementations under differ-
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Table 6: Bulk insertion throughput of three filters under differ-
ent duplication ratio in millions of inerstions per second.

Duplication Ratio 0% 10% 30% 50% 70% 90%

Cuckoo Filter 2.0 2.05 2.05 2.05 2.05 2.05
Multi-level CF 0.86 0.90 0.98 1.11 1.31 1.40

ent duplication ratios. MLCF is faster than CF in all cases.
Since there is only a single hash table in MLCF, the lookup
operation requires fewer memory references than the other
two alternatives. When the duplication ratio grows larger,
the table occupancy in all three filters becomes lower and
therefore, all three filters gain higher lookup throughput.
Under a higher duplication ratio, most entries in CF are
stored in the higher level, so the lookup procedure can find
these entries earlier. However, the duplication ratio does
not affect the performance of negative queries in CF. This is
because the lookup procedure still needs to check each level.
A single MLCF has better average lookup performance com-
pared to CF in multiple levels.
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Figure 10: Average lookup throughput of three filters under dif-
ferent duplication ratios.

5.4 Full System Benchmark
In this section, we report experiments that evaluate the

key-value stores in an end-to-end YCSB benchmark suite
[9] consisting of two phases: a create phase initializing the
key-value namespace and a query phase reading/writing key-
value entries. We modified YCSB’s key generator such that
the key namespace is divided into small groups such that
each group has the same number of entries. The key schema
consists of an 8-byte prefix and an 8-byte suffix. All entries
in the same group share the same hashed prefix. By default,
we use the uniform key distribution in YCSB, as it repre-
sents the least locality, and use minimal overwrites in the
workload, which helps increase a stores’ write pressure.

SlimDB Improves Insertion and Lookup Cost: We
evaluate our tested systems through multiple query work-
loads. During the creation phase, the YCSB benchmark
inserts 100 million entries into the empty key-value store
in a random order. These insertions are blind writes. The
value size of each entry is fixed to be 100 bytes. And each
prefix group has exactly 128 entries.

During the query phase, we tested four different workload
patterns from YCSB: a) The first workload issues one mil-
lion lookup operations on randomly selected entries (labeled
as Random Read); b) The second workload consists of a mix
of 50% random reads and 50% update operations (labeled as
50%R+50%BW). The update request is a blind write, which
inserts the entry into the key-value store without checking
the existence of the key; c) The third workload consists of a

Figure 11: Average throughput during five different workloads
for three tested systems. Log-scale is used on the y-axis.

mix of 50% random reads and 50% read-and-update opera-
tions (labeled as 50%R + 50%NBW). The read-and-update
is a non-blind write, reading the old value of the sought key
before updating it; d) The fourth workload does a sorted
scan starting from a random prefix to fetch all entires of one
prefix group (labeled as Random Scan).

To test out-of-RAM performance, we limit the machine’s
available memory to 4GB so the entire test does not fit in
memory. Therefore picking an entry randomly will render
key-value store’s internal cache effect ineffective. All tests
were run three times, and the coefficient of variation was
less than 1%.

Figure 11 shows the test results average over three runs.
SlimDB is much faster (≈4X) than LevelDB and RocksDB in
terms of insertion speed because of the use of Stepped-merge
algorithm. With the help of the compact in-memory index,
SlimDB is also 1.4 to 2 times faster for point queries. Even
for blind writes, the multi-level cuckoo filter will limit the
number of entries inserted into the secondary table to avoid
space explosion. In such case, multi-level cuckoo filter will
just behave like a traditional Bloom filter. However, SlimDB
is slower for scan operations since it has to search many more
sub-levels when using the Stepped-Merge algorithm. If a
workload is dominated by scan operations, SlimDB can be
configured to use fewer sub-levels to exchange faster scans
for slower insertions.

Figure 12 shows the test results for the insertions and
scan entries workload when the prefix group size varies from
128 to 512. The insertion througphut of SlimDB is not af-
fected by the group size. For all the tested system, the scan
throughput descreases when group size increases since each
scan operation fetches more entries. The scan time spent
fetching each entry actually decreases since more entries are
grouped in the same SSTable when group size is larger.

SlimDB Needs Less Main Memory: To show that
SlimDB uses a smaller memory footprint, we repeat the

Figure 12: Average throughput when the prefix group sizes are
128, 256, and 512. Log-scale is used on the y-axis.
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Figure 13: Average throughput of creation and random reads
when the memory sizes are 2GB, 4GB, and 8GB. Log-scale is
used on the y-axis.

above benchmark under different available memory size. We
changed the machine memory sizes through Linux boot pa-
rameters. Figure 13 shows the results of the create phase and
query phase (random read workload). For all three tested
systems, creation performance is insensitive to the mem-
ory size. This is because the creation workload contains
only blind writes, and does not need to check the existence
of an entry. For random reads, unlike other two systems,
SlimDB’s read performance is similar when memory size is
between 2GB and 8GB, because SlimDB’s indexes and fil-
ters are compact and more easily cached in memory. When
the memory size is 8GB, all tested systems can cache most
of datasets and achieve similar read performance.

SlimDB Scales Better with Data Volume: Because
the scalability of key-value store is of topical interest, we
modified the create phase to insert 450 million entries in
total with 256 byte values in each entry. The prefix group
size is still 128. The total size of all entries is about 110GB,
which almost saturates the solid-state disk used in this eval-
uation.

Table 7: The average insertion throughput and write amplifica-
tion of tested system over the entire 110GB create phase.

Insertion (Kops/s) Write Amp.

SlimDB 40.07 3.74
RocksDB 15.86 13.40
LevelDB 11.12 31.80

Table 7 lists the average insertion throughput and write
amplification over the entire create phase. Since the cre-
ate phase starts with an empty key-value store and entries
are created without name collisions, most existence checks
do not result in disk I/Os with the help of LSM-tree’s in-
memory filters. SlimDB still shows higher throughput than
other tested stores. The write amplification is calculated as
the ratio between the actual amount of written data, was
seen by the device and the total size of entries. The write
amplifications shown in the Table 7 match well to their the-
oretical bounds. SlimDB has 4 levels and its write amplifica-
tion is 3.74, which is very close to logr N = 4, the theoreti-
cal bound of the Stepped-Merge algorithm. Other key value
stores have much higher write amplification. For example,
the write amplification of LevelDB, which is closest to the
standard LSM-tree, is 31.8. This matches its theoretical
bound r logr N = 32.

Figure 14 shows the distribution of latencies of lookup
operations for the random read workload after the creation
phase. The x-axis presents the latency in a log scale. For
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Figure 14: The latency distribution of lookup operations for all
tested systems during the query phase.

SlimDB, its 99.9% percentile latency is 0.33ms, which is sig-
nificantly better than other tested systems. It demonstrates
the the bounded latency advantage by using compact in-
dexes in SlimDB. The tail latencies in other tested systems
are greatly affected by concurrent compaction procedure.

6. RELATED WORK
Modern key-value stores support fast writes/updates by

using log-based write or log-structured method such as Flash-
Store [11], SkimpyStash [12], SILT [24], LevelDB [20] and
bLSM [31]. Though log-appending is efficient for admitting
new data, it leaves the data not well organized and produces
a large metadata set, which leads to performance degrada-
tion for reads. Thus most systems such as LevelDB, SILT
and bLSM employ compaction procedure to re-organize the
internal data layout to (remove garbage from the log and)
reduce metadata size for fast reads. However, compaction al-
gorithms can generate a large write amplification. RocksDB
[29] compacts more than two contiguous levels at once in-
tending to sort and push data faster to the lower level [29].
Bε trees, FD-Tree, and TokuDB [6, 22, 4] are based on the
fractal tree and its variants, which buffer updates in internal
nodes where data is pushed to its next level by appending
it to log files. Without more sorting of its data, TokuDB
needs to maintain an index with a generally larger memory
footprint. In contrast, with the support of dynamic use of a
stepped merge algorithm and optimized in-memory indexes,
SlimDB minimizes write amplification without sacraficing
read performance.

There are other variants of the LSM-tree that exploit
workload characteristics to enhance write performance. LSM-
trie [33] combines the Stepped-Merge algorithm with hash-
range based compaction procedure to de-amortizing com-
paction overhead. VT-tree [32] exploits sequentiality in the
workload by increasing the number of indirections (called
stitching) to avoid merge-sorting all aged SSTables during
compaction. Walnut and WiscKey [8, 25] use similar parti-
tion techniques that store small objects into LSM-trees and
large objects into append-only logs to reduce write ampli-
fication by avoiding compacting large objects. This design
trades more disk reads for fewer disk writes. Most of these
technqiues are orthogonal to our work, and they can be used
in conjunction with SlimDB.

Compact in-memory indexes and filters are often used in
key-value stores to reduce unnecessary disk accesses for read
operations. Bloom filter [5] is the most widely used filters.
But it cannot support deletion of an item and has a bigger
memory footprint than Cuckoo filters. Perfect hashing in-
dexes, such as CHD [3] and ECT [24], use fewer than 2.5
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bits per key to map any given key in a set to a distinct
location. Such indexes support positive lookups but do not
answer negative lookups. Set separator [15] is another space-
efficient index structure that maps a large set of keys into
a small range of values. Its per-key memory cost is propor-
tional to the size of the value range. However, these indexes
only support pure hashing keys instead of semi-sorted keys,
do not preserve the sequentiality of prefix keys.

Existing LSM-tree based key-value stores do not allow
trading among read cost, write cost and main memory foot-
print. For example, LevelDB [20], RocksDB [29] and LSM-
trie [33] only enable leveled compaction or stepped merge al-
gorithm respectively, and they use a fixed number of bits per
element for all Bloom filters and SSTable indexes. Similar to
our work, Monkey [10] uses worst-case closed-form models
that enable optimizing throughput by automatically tuning
the size ratio between levels and bit cost of Bloom filters.
Another complementary work [23] uses a numeric simula-
tion method to quantify update cost in different LSM-tree
variants when there is a skew in the update pattern. We go
one step further here; our analytical model quantifies costs
for both filters and SSTable indexes thereby searching over
a bigger design space.

7. CONCLUSION
General-purpose LSM-tree implementations usually lack

optimizations for read and write amplification for key-value
workloads running on solid-state disks. We present tech-
niques that allow key-value workloads with semi-sorted data
and non-blind writes to run more efficiently, in terms of both
I/O activities and memory consumption. To improve read
performance, we present two ideas for shrinking an index:
a three-level compact index that only costs 1.9 bits per key
to locate the block position of a particular key inside the
SSTable; and the design of a multi-level cuckoo filter that
not only bounds the worst-case latency of lookup operations,
but also improves the average latency. Through integra-
tion with the Stepped-Merge algorithm, experiments show
that our new key-value store implementation, SlimDB, can
achieve a better balance between read and write amplifica-
tion. We also proposed an analytical framework allowing
optimal selection of data layout and in-memory index in
key-value stores for general workloads.
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