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Abstract—Traditional scientific visualization pipelines transfer
entire data arrays from storage to client nodes for processing
into displayable graphics objects. However, this full data transfer
is often unnecessary, as many visualization filters operate on
only small subsets of data in a data array. With the rise of
computational storage, smart NICs, and smart devices enabling
offloaded processing, this paper examines a case where a visual-
ization pipeline is divided into pre-filters that run near data and
post-filters that execute on the client side. Pre-filters preprocess
the data near it on storage nodes, reducing data volumes before
transfer based on downstream pipeline needs, while post-filters
complete the processing on the client node. Experiments done
on two real-world simulation datasets demonstrate that this ap-
proach can significantly reduce network transfer volumes, cutting
visualization pipeline data load times by up to 2.8× compared to
traditional methods, and up to 11.9× when combined with data
compression techniques.

I. INTRODUCTION

Scientific datasets stored in popular file formats such as

VTK, HDF5, and NetCDF often contain multiple data arrays,

each representing a specific data attribute such as temperature,

velocity, or material density. Traditional scientific visualization

pipelines, such as those powered by the Visualization Toolkit

(VTK) [1], require reading the entirety of those arrays from

storage before filtering and processing them on client nodes,

where they are transformed into graphical representations for

interactive analysis. However, as data sizes continue to grow,

reading back those data arrays from storage to client nodes has

become increasingly time-consuming, leading to longer overall

pipeline runtimes and delayed insights. This significantly

hinders the efficiency of modern scientific discovery.

Existing scientific visualization software stack provides two

ways to mitigate the cost of large data transfers: data array

selection and data compression. Data array selection allows

a visualization pipeline to specify a subset of data arrays to

read rather than always reading every data array in a dataset.

This avoids transferring irrelevant data arrays and thereby

reduces overall data transfer cost. Data compression decreases

data transfer sizes by compressing the data before storage

and decompressing it upon reading. Commonly used data

compression methods include GZip [2] and LZ4 [3], both of

which are general-purpose, lossless compression algorithms.

While transferring only necessary data arrays and applying

compression can effectively reduce data transfer volumes, each

selected array is still transmitted logically in its entirety: this
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Fig. 1: Comparison of data reduction ratios achieved across various
technologies.

remains inefficient. Real-world visualization pipelines often

consist of filters that target only a small subset of data within

an array, making full-array transfers unnecessary. For example,

contour filters — which are widely seen in visualization

pipelines — focus only on data near the contour values rather

than the entire array. This, in practice, can easily translate to

several orders of magnitude fewer data values compared to the

original array.

As an example, Fig. 1 compares the final data transfer size

when applying data compression on a real-world scientific

dataset to that of transferring only the necessary data values

required by a contour filter. For each case, a range of data

transfer sizes is shown, reflecting the results achieved over a

series of simulation timesteps and contour values. While we

provide more details on this example dataset and the contours

later in this paper, the results show that transferring only the

values needed by a downstream pipeline filter — a contour

filter in this case — has the potential of achieving a far more

significant data reduction rate than that of data compression. In

our example, data compression reduced data transfer sizes by

1 to 2 orders of magnitude, whereas pipeline-filter-based data

filtering achieved an up to 7 orders of magnitude reduction in

data transfer sizes.

As concepts such as computational storage [4, 5], smart

NICs [6], and smart devices [7] mature, this paper explores a

case where the data selection logic of a VTK visualization

pipeline is offloaded to storage for executing early before

costly data transfer occurs that moves data from storage to
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Fig. 2: Overview of a VTK visualization pipeline.

client nodes. To enable such offloads, we propose dividing

a pipeline filter — such as a contour filter — into a pre-

filter that runs near data on storage nodes and a post-filter

that runs on the client side. Pre-filters preprocess the data on

the storage side, reducing data movement by sending only

necessary information to the client nodes, where post-filters

complete the processing.

We developed a prototype of a modified VTK contour filter,

incorporating a pre-filter component for data reduction that

runs on the storage side and a post-filter component for contour

generation that runs on the client side.

We use two real-world scientific datasets to study the perfor-

mance of offloaded data retrieval and filtering in VTK-based

visualization pipelines: one from xRage [8], a versatile multi-

physics simulation code, and the other from Nyx [9], a cosmo-

logical simulation application. Preliminary results show that

our approach significantly lowers network traffic, decreasing

visualization pipeline data load time by up to 2.8× compared

to traditional methods (i.e., reading entire data arrays) and up

to 11.9× when combined with data compression techniques.

This early-experience paper offers 3 key contributions: 1) a

novel approach to accelerating scientific visualization pipelines

using offloaded computation, 2) a prototype implementation

based on real-world VTK software code, and 3) an evaluation

using two real-world scientific datasets that shows promising

results.

The rest of this paper is organized as follows: Sec. II

provides background on VTK visualization pipelines and

contouring. Sec. III introduces our primary example dataset.

Sec. IV evaluates data compression techniques as the current

state-of-the-art. Sec. V presents our approach. Sec. VI reports

experimental results using our first example dataset. Sec. VII

introduces our second dataset along with its experimental re-

sults. Sec. VIII discusses related work, and Sec. IX concludes

the paper.

II. BACKGROUND

A typical simulation science workflow consists of a data

generation phase and a data analysis phase. During the data

generation phase, simulation applications are run, writing

timestep data to storage. This is then followed by the data

analysis phase, where visualization pipelines are executed to

perform data analytics.

Commonly used scientific visualization software includes

ParaView [10, 11] developed by Kitware and VisIt [12] devel-

oped by LLNL, both are built on the VTK visualization toolkit.

In this section, we provide an overview of VTK visualization

pipelines, their limitations, and explore a specific type of VTK

1 6 9 5 4 3 4 5

2 7 7 8 9 7 3 3

8 4 5 8 8 2 2 6

2 4 9 4 6 4 6 7

4 9 1 6 5 2 7 5

2 4 4 4 3 8 9 2

Fig. 3: A simple 2D contour example.

filters — contour filters — that are widely used in real-world

visualization applications.

A. VTK Visualization Pipelines

A VTK-based visualization pipeline consists of three main

components: sources, filters, and sinks, as Fig. 2 illustrates.

Sources are the starting points of the pipeline. They generate

or read data from various formats — such as VTK, HDF5,

and many others — and introduce it into the pipeline. Filters

are intermediate processing units that transform, manipulate,

or analyze the data. They take input data from sources or other

filters and produce output data that can be further processed.

Finally, sinks are the endpoints of the pipeline where the pro-

cessed data is rendered or written out. In practice, sinks often

include renderers that convert data into visual representations,

allowing for interactive exploration and analysis.

Real-world VTK pipelines are often invoked indirectly by

software such as ParaView and VisIt. In such cases, a VTK

pipeline is run either in standalone mode on a single node

or in a client-server configuration across multiple nodes. In

the client-server setup, the server runs on one or more nodes,

handling data processing and potentially parallel rendering,

while the client connects to the server, sending commands

and receiving rendered images or data.

Traditional VTK pipelines depend heavily on filesystems

— either local or parallel — for reading and writing data.

These filesystems offer very limited data querying and filtering

capabilities. Consequently, to analyze data, entire arrays often

have to be read into client memory, even when only a small

portion is needed for the visualization task at hand. This results

in excessive data movement, a challenge that our approach

tries to address through offloaded processing, as Sec. V further

discusses.

B. Contour Filters

A contour is a curve or surface that connects points of

equal value within a dataset. These points are typically derived

from data arrays of scalar types representing attributes such



TABLE I: Scalar Fields

Array Name Data Type Description

rho float Density in grams per cubic centimeter

prs float Pressure in microbars

tev float Temperature in electronvolt

xdt float X component vectors in centimeters per second

ydt float Y component vectors in centimeters per second

zdt float Z component vectors in centimeters per second

snd float Sound speed in centimeters per second

grd float AMR grid refinement level

mat float Material number id

v02 float Volume fraction of water

v03 float Volume fraction of asteroid

as temperature, pressure, or elevation. Contours help in under-

standing the spatial distribution of these attributes, allowing for

intuitive visual interpretation of potentially complex data.

Fig. 3 shows a simple example where a contour of value 5

is drawn over a 8×6 mesh comprising 48 data points holding

values randomly generated from 0 to 9. The contour intersects

points that either directly have a value of 5 or are interpolated

along edges where one end is above 5 and the other is below

5. We refer to such edges as “interesting edges” because they

help form the contour. In contrast, the remaining edges do

not contribute toward the contour and can be safely ignored

without impacting the final contour result.

If a VTK pipeline is able to execute some of its code very

close to data — where data transfer overhead is significantly

lower — it could use this opportunity to preview the source

dataset and select only the mesh points associated with at

least one such interesting edge. This approach minimizes

the amount of data that needs to be transferred in order to

generate the contour, ensuring that only necessary information

is communicated between storage and the visualization node.

In VTK, contours are implemented as filters. They take

scalar data arrays — as well as mesh definitions — as input

and produce lines (2D) or polygons (3D) that define the

contour as output. While our randomly generated contour

example above demonstrated limited potential in reducing data

movement by transmitting only mesh points of interest, real-

world scientific datasets typically offer greater potential for

data reduction due to the scientific nature of their simulations.

III. EXAMPLE DATASET

Our example dataset [13] is generated from a real-world

simulation application named xRage [8]. It is a parallel multi-

physics Eulerian hydrodynamics code developed by LANL

that can be used to study asteroid impacts in deep ocean water.

In these applications, each xRage simulation simulates an

asteroid falling to earth from the upper atmosphere, descending

rapidly, and striking the ocean.

A simulation runs in timesteps. Every few timesteps, the

simulation pauses and writes its current state to storage as

VTK data files. Each timestep comprises 11 data arrays,

corresponding to 11 distinct data attributes as listed in Table I.

Fig. 4: Visualization of two contours over water (cyan) and asteroid
(yellow) at timestep 24095 of the deep water asteroid impact dataset.

In our example, each array holds 125M values. Each such

value maps to a vertex in a 500×500×500 mesh space.

Arrays of particular interest include v02 (which measures

the volume fraction of water) and v03 (which measures the

volume fraction of asteroid). Both arrays have a value range

of [0, 1]: a value of 0 indicates no water or asteroid in a given

area, while a value of 1 indicates complete coverage by water

or asteroid in that area.

Fig. 4 demonstrates a visualization of two contours over

arrays v02 (cyan) and v03 (yellow) at timestep 24095. Both

contours are set at value 0.1, representing the outer surface of

the water (v02) and the asteroid (v03), respectively. It depicts

the aftermath of the asteroid’s impact on the ocean, including

a tsunami that it triggers.

To make such contours, a VTK visualization pipeline is

configured with 1) a VTK reader that acts as a source of the

pipeline that reads simulation data — stored as VTK data

files — from a filesystem, 2) a contour filter that takes v02

and v03 data arrays as input and produces contours at the

value configured — 0.1 in our case — as output, and finally

3) a sink that runs an OpenGL subpipeline that renders the

contours — defined as a set of polygons, or specifically as a

set of triangles in our case — on the screen for interactive

exploration and analysis.

While our example dataset contains 11 data arrays, only v02

and v03 need to be read to create the contours. To accomplish

this, VTK’s data array selection can limit data transfer to just

these two arrays. However, the entire v02 and v03 arrays must

still be read from the filesystem during pipeline execution. To

improve performance, data compression is often employed to

reduce data size, decreasing data load time, thereby allowing

the pipeline to run faster.

IV. APPLYING DATA COMPRESSION

Figs. 5a and 5d compare the data sizes of arrays v02 and

v03 before and after applying GZip and LZ4 compression,

two widely used methods natively supported by VTK. Results

show that data compression is able to effectively reduce array
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Fig. 5: Evaluation of VTK’s native data compression methods, GZip and LZ4, in reducing data size and load times using the deep water
asteroid impact dataset. Figs. 5a, 5b, and 5c show results on the v02 data array (water). Figs. 5d, 5e, and 5f show results on v03 (asteroid).

data sizes, with GZip achieving a reduction ratio ranging from

7 to 588×, and LZ4 from 6 to 299×. The ratio is higher at the

beginning of the simulation and gradually decreases over time.

This trend occurs because data entropy is lower at the start

of the simulation and increases as the simulation progresses,

leading to reduced compression effectiveness.

Figs. 5b and 5e report the time required for a VTK pipeline

to read back either the v02 or the v03 data array from a

remote S3 object store to its local memory via s3fs, an open-

source FUSE-based solution that enables mounting remote S3

buckets and operating them as local filesystems. We examine

cases in which data is uncompressed and cases in which it is

compressed using either GZip or LZ4. Our experiments were

done on two nodes, one acting as the object storage server and

the other as the client. The server node runs a MinIO server

instance backed by a local SSD to provide the S3 service.

MinIO is an open-source object storage implementation with

an interface compatible with Amazon S3. The client machine

mounts the S3 storage using s3fs over a 1Gb Ethernet link.

We pre-populate the object storage with our example

dataset. Each data file is stored as an object in the object store,

and can be opened and read as regular files through s3fs. We

run a standalone VTK pipeline on the client node. In each run,

the pipeline opens a timestep file, reads either the v02 or the

v03 data array out of it, generates a contour, and renders it

on the screen. We focus on the time it takes for the pipeline

to load the data from storage to its local memory. This time

includes data decompression when applicable, but excludes

contour generation and rendering, which take between 0.8 to

1.3s in our experiments depending on contour complexity. All

contours are set to contour at value 0.1. We repeat each run 5

times and report the average.

By reducing the size of each data array, data compression

requires fewer amounts of data to be transferred, allowing each

visualization pipeline to run faster. While it takes the baseline

— reading data in its uncompressed form — 12 seconds to

read the data, results show that applying compression can limit

this time to under 4 seconds across all timesteps, leading to at

least a 3× speedup in data load times for both v02 and v03.

The most significant improvement is observed in timestep 0,

where GZip achieves an 8× reduction in data load times while

LZ4 achieves a 7× improvement. This is because the data

compression ratio is highest at the beginning of the simulation,

resulting in the least amount of data movement and the lowest

data load time.

While GZip generally provides a higher data compression

ratio than LZ4, it tends to perform on par with or slower than

LZ4 in terms of data load times. This is because GZip’s more

compute-intensive compression and decompression processes

lead to longer decompression times, offsetting the benefits of

moving less data and resulting in equal or even longer overall

data loading durations.

To illustrate this, Figs. 5c and 5f report data load times when

data is stored on a local filesystem instead of a remote object

store. This decreases data transfer cost, allowing us to focus

more on data decompression overheads. Results show that LZ4

consistently achieves lower data load times compared to GZip

in all cases, thanks to LZ4’s lower decompression overhead

and the reduced impact of data movement in local storage

environments.

While compression can significantly reduce data transfer

size and load time in visualization pipelines, there is still room

for more aggressive data reduction by dynamically leveraging

the selectivity of downstream filters to limit transfer to only

necessary information, which leads to our approach.

V. TOWARD NEAR-DATA PROCESSING

Real-world visualization pipelines often consist of filters

that target only a small subset of data within a data array, mak-

ing transferring the entire array — even in its compressed form
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Fig. 6: Data selection rates for contouring the v02 and v03 data arrays
from the deep water asteroid impact dataset, expressed in permillage
(‰).

— unnecessary. When data movement limits the performance

of a visualization pipeline, pre-selecting data at the storage

end — which we refer to as near-data processing or NDP —

can help eliminate those irrelevant subsets of data before they

are sent, thereby minimizing data transfer sizes. To assess the

potential of such methods, Figs. 6a and 6b report the amount

of information — expressed as permillages of the original data

— necessary to accurately generate contours against the v02

and v03 data arrays in our example dataset. These are the

subsets of mesh points associated with at least one interesting

edge as Sec. II defines. We consider contour values ranging

from 0.1 to 0.9, spanning the entire value space of the two

data arrays while avoiding extremes to preserve generality.

Results show that selecting data based on downstream

pipeline filters — in our case, contours — can significantly

reduce data movement, routinely cutting data transfer sizes

by orders of magnitude, from less than 0.01% to 4%. This

reduction is more pronounced in v03 (asteroid) compared

to v02 (water) because the asteroid spans a smaller mesh

space than that of the ocean, as shown in Figs. 7 and 8.

Additionally, data reduction for v02 is more significant at the

beginning of the simulation than at the end, due to the asteroid

(a) t=0 (b) t=6817 (c) t=12244

(d) t=18124 (e) t=24095 (f) t=30068

(g) t=36069 (h) t=42021 (i) t=48013

Fig. 7: A movie of contours at value 0.1 against the v02 (water) data
array in the deep water asteroid impact dataset.

impacting the ocean midway through the simulation. For both

v02 and v03, there is a trend of higher selectivity as contour

value increases, which aligns with the scientific nature of this

particular simulation.

In our example, the resulting data reduction rates tend also

to frequently outperform general data compression methods

such as GZip and LZ4, as we previously measured in Fig. 5.

This is because data compression must still account for an

entire array’s information, whereas our approach tailors the

data reduction to a specific visualization pipeline at runtime.

This allows for more aggressive size reductions, albeit being

more ad-hoc compared to data compression.

In practice, data compression and near-data processing are

orthogonal to each other and can be applied together. When

data is compressed, pre-selection can be done by reading the

compressed data from storage, decompressing it, and then

applying the usual data pre-filtering process. This combination

allows compression to reduce local data read time by shrinking

dataset sizes, while near-data processing ensures that only the

minimum necessary data is transferred, as Fig. 9 illustrates.

This leverages the strengths of both technologies.

To offload data pre-selection and filtering to storage, we

envision dividing a pipeline filter into a pre-filter component

and a post-filter component, as Fig. 10 shows. The pre-filter,

along with the source, forms a partial VTK pipeline that runs

on the storage side. Meanwhile, the post-filter, along with the

sink, forms the remainder of the pipeline that runs on the

client side, where reading and writing data are expected to

be expensive. The two partial pipelines communicate using an

RPC-based interface, with the client-side component serving

as the RPC client and the storage-side component serving as

the server.

The pipeline runs by the client sending pipeline information

to the server. Upon receiving this information, the server’s

source reads the data from storage, decompresses it if neces-

sary, and passes the result to the pre-filter. The pre-filter then

scans the data in memory, identifies all necessary information

to be transferred, and performs the transfer. Once the client
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Fig. 8: A movie of contours at value 0.1 against the v03 (asteroid)
data array in the deep water asteroid impact dataset.
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Fig. 9: Illustration of applying compression and NDP either individ-
ually or together.

receives the reply, it resumes executing the remainder of the

pipeline as usual, potentially rendering the results on a screen

for interactive exploration and analysis.

VI. IMPLEMENTATION AND EVALUATION

We developed a modified VTK contour filter that splits the

original filter into a pre-filter and a post-filter. The pre-filter

takes a full VTK data array as input and extracts a subarray

that contains only the data points relevant to the contour being

generated. The post-filter then takes this subarray as input and

produces the final contour.

Our implementation supports generating contours at mul-

tiple contour values at the same time. Additionally, a VTK

pipeline can be configured with multiple instances of our con-

tour filter, enabling contour generation for multiple data arrays

simultaneously. In this setup, each contour filter instance is

dedicated to processing a specific data array, just as in the

original VTK implementation. We support uniform rectilinear

grids at the moment, with plans to extend support to more

complex grid types in future work.

We use rpclib [14], an open-source C++ RPC library, to

implement the communication between pre-filters and post-

filters. It utilizes MessagePack [15], an open-source binary

Drive ScreenSource Pre-Filter SinkPost-Filter
RPC

Storage Node Client Node

Fig. 10: Applying near-data processing to VTK-based visualization
pipelines.

serialization format, to efficiently marshal and unmarshal data,

alleviating interprocess-communication overhead.

Our experiments were done using the same 2-node hardware

setup as we used in Sec. IV. One node serves as the server,

running a MinIO instance that provides an S3-compatible

interface, while the other node functions as the client. In

Sec. IV, the VTK pipeline is executed entirely on the client

node, with data accessed by mounting the S3 storage as a

local filesystem on the client node using s3fs. We will refer

to this setup as the baseline. To test our approach, we execute

the pre-filter stage of the pipeline on the storage node and

the post-filter stage on the client node. Since the pre-filter

stage is responsible for accessing the data, the S3 storage is

mounted as a local filesystem on the storage node in this new

configuration, rather than on the client node. We refer to this

setup as near-data processing (NDP). Fig. 11 compares the

two setups.

As in Sec. IV, we evaluate both uncompressed data and

data compressed using GZip and LZ4. For baseline runs, the

VTK pipeline accesses data via s3fs on the client node. In the

NDP runs, the pre-filter sub-pipeline reads data through s3fs

on the storage node and sends filtered data to the post-filter

sub-pipeline running on the client node through RPC. In both

scenarios, data is sourced through s3fs, which interfaces with

MinIO to retrieve data from a local SSD on the storage node.

The key difference is that in the baseline case, s3fs operates

remotely from MinIO, whereas in the NDP case, s3fs runs

on the same node as MinIO. This setup ensures fairness, as

both the baseline and NDP runs utilize the same storage I/O

software stack — s3fs, MinIO, and a local SSD — for data

access, and experience the same storage I/O overhead. While

the baseline incurs network traffic equivalent to the original

data size, NDP allows network traffic to be significantly

reduced by limiting transfer to only necessary information.

This reduction in network traffic is the key distinction between

the baseline and NDP runs, and is the primary focus of our

experimental evaluation.

Our experiments involve generating a contour movie across

a series of simulation timesteps. We use 5 contour values

ranging from 0.1 to 0.9 and 9 timesteps spanning from 0 to

48,013. Each run proceeds sequentially, reading data from the

first timestep, generating a contour, and then moving on to

process the next timestep. Each run is dedicated to a specific

contour value. We measure the time required for a pipeline

to prepare data in memory for contour generation at each

timestep. In baseline runs, this encompasses the time needed to

read and, when necessary, decompress the data. In NDP runs,
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Fig. 11: Comparison of baseline and NDP experimental setups, both
leveraging the same storage I/O stack for data access. In the baseline
setup, network communication occurs between MinIO and s3fs, while
in the NDP setup, it occurs between the pre-filter and post-filter stages
of the pipeline.

the measurement includes the time taken to read, decompress,

and filter the data, as well as the time required to send the

filtered data to the client. We repeat each run 5 times and

report the average.

Fig. 13 shows the results. There are 6 subfigures. Each

displays results for a specific data type (RAW, GZip, or LZ4)

and data array (v02 or v03), comparing the baseline case to

the NDP. Results show that NDP consistently outperforms the

baseline in all cases, achieving speedups ranging from 1.2×

to 2.8×. This is because NDP reduces network traffic by pre-

filtering data before transfer, allowing it to experience less

network communication overhead and load data more quickly.

The largest speedups are observed in the raw data runs

due to their larger base data sizes compared to compressed

data, allowing NDP to attain higher data reduction ratios and

greater performance improvements. LZ4 outperforms GZip

in speedups, as GZip’s higher data decompression overhead

outweighs the benefit of its smaller base data size, resulting

in longer data load times, as noted earlier in Sec. IV. Finally,

v03 shows slightly higher speedups than v02, due to the greater

selectivity of v03 contours, as illustrated in Figs. 6a and 6b.

The speedups for different contour values — from 0.1 to

TABLE II: Speedups in data load times achieved by various combina-
tions of data reduction techniques on the deep water asteroid impact
dataset.

Array
Data

Contour
Value

Speedup

RAW NDP GZip LZ4 GZip+NDP LZ4+NDP

v02 0.1 1.0× 2.30× 3.96× 4.63× 4.77× 6.22×

0.3 1.0× 2.32× 3.96× 4.63× 4.91× 6.36×

0.5 1.0× 2.37× 3.96× 4.63× 5.08× 6.62×

0.7 1.0× 2.40× 3.96× 4.63× 5.23× 6.92×

0.9 1.0× 2.49× 3.96× 4.63× 5.73× 7.87×

v03 0.1 1.0× 2.70× 3.94× 4.59× 6.81× 10.74×

0.3 1.0× 2.73× 3.94× 4.59× 6.91× 11.12×

0.5 1.0× 2.77× 3.94× 4.59× 7.20× 11.62×

0.7 1.0× 2.78× 3.94× 4.59× 7.28× 11.77×

0.9 1.0× 2.80× 3.94× 4.59× 7.36× 11.87×

Fig. 12: A contour over baryon density in the Nyx dataset, highlight-
ing regions of candidate halos.

0.9 — remain almost consistent within each subfigure. This is

because the selectivity differences among contour values are

negligible compared to the overall data size. The reported load

time includes both network transfer and the time for MinIO

to read data from its local SSD. For NDP runs, the network

transfer cost is so low that the load time is dominated by the

MinIO data load time, resulting in minimal variation across

different contour values.

We summarize our experiments in Table II, which presents

the speedups in data load times achieved through various

combinations of data reduction techniques, including GZip,

LZ4, and NDP. We use reading uncompressed data without any

near-data processing as the baseline and calculate speedups

relative to it. These results are identical to those presented

in Fig. 13, but viewed from a different perspective. NDP

achieves a speedup of up to 2.8× when used alone, and up to

11.9× when combined with GZip and LZ4 data compression

techniques.

The speedup from using NDP alone is relatively modest

in these runs because, although NDP significantly reduces

network traffic, it does not accelerate local data read times

(i.e., MinIO data read times), which in these runs constitute

a substantial portion of the total data load time. Combining

NDP with data compression reduces both network traffic and

local data read times, resulting in higher overall speedups.

Similarly, while data compression reduces both network

traffic and local data read times by minimizing base data size,

it does not filter out irrelevant data subsets before transfer,

resulting in higher-than-optimal network transfer volumes.

Combining data compression with NDP minimizes network

traffic while maintaining low local data read times, leading to

the fastest data load times.

VII. A SECOND EXAMPLE

Our second dataset is part of SDRBench [16, 17], a collec-

tion of real-world scientific datasets for benchmarking lossy

data compressors as well as other data reduction techniques.

The dataset we use is generated by Nyx [9], a cosmological
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Fig. 13: Evaluation of NDP’s effectiveness in reducing data load times for both compressed and uncompressed data in the deep water asteroid
impact dataset. Figs. 13a, 13b, and 13c show results on the v02 data array (water). Figs. 13d, 13e, and 13f show results on v03 (asteroid).
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Fig. 14: Evaluation of NDP’s effectiveness in improving data load
times for the Nyx dataset.

hydrodynamics simulation code, and consists of a single

timestep. It contains six data arrays: velocity components (x, y,

z), temperature, dark matter density, and baryon density. Our

focus is on the baryon density, where a value of 81.66 serves

as the threshold for halo formation [18, 19]. Fig. 12 illustrates

a contour based on baryon density at this threshold, with a data

selectivity of 0.06%. This is the subsets of array mesh points

that need to be transferred for contour generation. This number

is low, which is why NDP can significantly cut network traffic,

accelerating the visualization pipeline execution.

We repeat the experiment from Sec. VI using the same

hardware setup, testing both uncompressed data and data

compressed with GZip and LZ4. Fig. 14 compares data load

times between the baseline approach (loading entire arrays)

and NDP (offloaded data selection and filtering). Results show

that NDP lowers data load times by 1.8× to 2.3×, thanks to a

significant reduction in network traffic. However, since NDP

must still read data from MinIO before applying pre-filters,

its runtime is lowerbounded by local data read times, which

limits the maximum speedup NDP can achieve, like in our

previous experiments in Sec. VI.

Unlike the deep water asteroid impact dataset, neither GZip

nor LZ4 effectively reduced the size of the Nyx dataset,

resulting in data load times comparable to those of uncom-

pressed data. GZip, in particular, worsened load times by

adding significant decompression overhead while achieving

only a modest 11% reduction in base data size. We antic-

ipate that highly optimized floating-point data compressors

could achieve higher compression ratios, but we leave this

for future work, as 1) there is a lack of native support for

these algorithms in VTK, and 2) our previous dataset has

already covered cases in which compression yields significant

reduction ratios. As a data reduction technique complementary

to data compression, NDP can always be used in conjunction

with compression — lossy or lossless — to further reduce data

load times. This is particularly effective when data selectivity

is high, a scenario we expect to be quite common for scientific

workloads.

VIII. RELATED WORK

Floating-point data plays a vital role in scientific sim-

ulations. As the scale of these applications expands, data

compression has become essential for mitigating I/O, storage,

and communication overheads. Floating-point compression

techniques fall into two primary categories: lossless and lossy.

Lossless compression [2, 3, 20–24] does not introduce

errors in the data, making it suitable for scenarios where

information loss is intolerable. For instance, in large-scale

HPC simulations, lossless compression is often employed

during checkpointing to prevent error propagation. Similarly,

in distributed applications where data must be communicated

across nodes at every time step, lossless compression ensures

that compression errors do not accumulate beyond acceptable

levels [25, 26], unlike lossy compression.

On the other hand, lossy compression techniques such

as SZ [27–29], ZFP [30], and MGARD [31], along with

their GPU-accelerated versions [32–34], often achieve higher

compression ratios by trading accuracy for user-controllable

errors in the data. These lossy compressors have been widely



adopted in the scientific community [35–44] due to their capa-

bility to provide significant data reduction while maintaining

manageable accuracy impacts on scientific results.

In this work, we focus on the lossless compression algo-

rithms GZip and LZ4, as they are natively supported by the

VTK library. As future work, we plan to explore additional

compression algorithms, including lossy compression meth-

ods.

While both data compression and NDP mitigate storage I/O

bottlenecks through reducing data size or data transfer sizes,

in-situ analysis techniques such as PreDatA [45], GLEAN

[46, 47], NESSIE [48], DataSpaces [49], GoldRush [50],

and SENSEI [51] accelerates analysis and visualization by

performing these tasks during simulation, bypassing the need

for data storage and avoiding I/O bottlenecks altogether.

IX. CONCLUSION

Analysis and visualization of large scientific datasets are

key components of modern scientific discovery. While tradi-

tional data reduction techniques like compression can effec-

tively reduce data size and movement, this paper explores

an alternative approach by offloading data-intensive stages

of a visualization pipeline to execute near the data. By pre-

selecting only the necessary data for downstream operators and

transferring only these subsets over the network, our approach

minimizes network traffic, enabling more rapid visualization

pipeline execution. Preliminary experiments on two real-world

datasets demonstrate promising results, with up to a 2.8×

reduction in pipeline data load time for uncompressed data,

and up to an 11.9× reduction when combined with data

compression techniques. This speedup is upperbounded by

local data read times, which in our runs, involving reading

data out of an object store. While testing with two real-world

datasets is not exhaustive across all application domains, we

expect the benefits of offloaded data selection and filtering

to be reasonably prevalent and can be replicated in many

other visualization applications. Our current experiments were

limited to a single filter type and conducted in a traditional

server-based computing environment rather than on embedded

devices, setting the stage for future research. While our current

focus has been on improving data load times, future work will

include end-to-end performance assessments, incorporating

the time required for visualization computation (e.g., contour

generation) and on-screen image rendering.
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K. E. Jansen, B. Loring, Z. Lukić, S. Menon, D. Morozov, P. O’Leary,
R. Ranjan, M. Rasquin, C. P. Stone, V. Vishwanath, G. H. Weber,
B. Whitlock, M. Wolf, K. J. Wu, and E. W. Bethel, “Performance
analysis, design considerations, and applications of extreme-scale
in situ infrastructures,” in Proceedings of the 2016 International

Conference for High Performance Computing, Networking, Storage,

and Analysis (SC 16), 2016, 79:1–79:12.

https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp
https://doi.org/10.1109/TPDS.2023.3339474
https://doi.org/10.1109/TPDS.2023.3339474
https://doi.org/10.1109/IPDPS.2010.5470454
https://doi.org/10.1109/IPDPS.2010.5470454
https://doi.org/10.1109/LDAV.2011.6092178
https://doi.org/10.1109/LDAV.2011.6092178
https://doi.org/10.1145/2063384.2063409
https://doi.org/10.1145/2063384.2063409
https://doi.org/10.1155/2012/842791
https://doi.org/10.1109/SC.2012.31
https://doi.org/10.1109/SC.2012.31
https://doi.org/10.1145/2503210.2503279

	Introduction
	Background
	VTK Visualization Pipelines
	Contour Filters

	Example Dataset
	Applying Data Compression
	Toward Near-Data Processing
	Implementation and Evaluation
	A Second Example
	Related Work
	Conclusion

